
12 Security Testing

• What is Security Testing?

• Security Testing the GotoFail Vulnerability

• Functional Testing

• Functional Testing with the Vulnerability

• Security Test Cases

• The Limits of Security Tests

Topics

• Writing Security Test Cases

• Fuzz Testing

• Security Regression Tests

• Availability Testing

• Best Practices for Security Testing

Topics

What is Security Testing?

• Most testing checks that functionality works as intended

• Security testing ensures that operations that should not be
allowed aren't

• Types of security test cases

• Integer overflows

• Memory management problems

• Untrusted inputs

• Web security

• HTTP downgrade, CSRF, XSS

• Exception handling flaws

Security Testing

Security Testing the GotoFail Vulnerability

int VerifyServerKeyExchange(ExchangeParams params,  
 uint8_t *expected_hash, size_t expected_hash_len) {
 int err; HashCtx ctx = 0;
 uint8_t *hash = 0;
 size_t hash_len;
 if ((err = ReadyHash(&ctx)) != 0) goto fail;
1 if ((err = SSLHashSHA1.update(ctx,
 params.clientRandom, PARAM_LEN)) != 0) goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom, 
 PARAM_LEN)) != 0) goto fail;
 goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.signedParams,  
 PARAM_LEN)) != 0) goto fail;
 if ((err = SSLHashSHA1.final(ctx, &hash, &hash_len)) != 0) goto fail;
 if (hash_len != expected_hash_len) {
 err = -106;
 goto fail; }
4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {
 err = -100; // Error code for mismatch }
 SSLFreeBuffer(hash);
fail: if (ctx) SSLFreeBuffer(ctx); } return err;

Complete Function

1 if ((err = SSLHashSHA1.update(ctx,
 params.clientRandom, PARAM_LEN)) != 0) goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom, 
 PARAM_LEN)) != 0) goto fail;
 goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.signedParams,  
 PARAM_LEN)) != 0) goto fail;
4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {
 err = -100; // Error code for mismatch }

fail: return err;

Simplified Function

• Extra goto fail line makes it skip the SSL certificate verification
test

• Functional testing will pass--it works for valid SSL certificates

• Try various types of invalid certificates and other invalid values

• Confirm that they are all rejected

• Rules of thumb for security tests

• It's more important for security-crucial code

• Most important: check for denying access, rejecting input, or
otherwise failing

• Ensure that each of the key steps work correctly

Security Test Cases

Writing Security Test Cases

• Create them along with other unit tests

• Not only as a reaction to finding vulnerabilities

• Code must block improper actions, reject malicious inputs, deny
access, etc., like:

• Login fails with wrong password

• Accesing kernel resources from user space fails

• Invalid digital certificates are rejected

Security Test Cases

• Input field should be alphanumeric, 10-20 characters

• Check that a valid input of length 10 works, but an input of
length 9 or less fails.

• Check that a valid input of length 20 works, but an input of
length 21 or more fails.

• Check that inputs with one or more invalid characters always
fail.

Testing Input Validation

• User submits a color parameter

• Page applies that color to some text

XSS Example

• This is the attack string

• Resulting HTML

XSS Example

• If output contains user-controlled input values

• Test for special characters like <>"

• The function below tests to make sure the parsed HTML
structure is the same when a parameter contains a "

• Adds a <meta> tag to the end of the document

• Verifies that it's found and unaltered

Testing for XSS Vulnerabilities

def test_parsed_html(self):
 for content in ['x', 'x"']:
 result = html_tag('meta', {'name': 'test', 'content': content})
 soup = BeautifulSoup(result, 'html.parser')
 node = soup.find('meta')
 self.assertEqual(node.get('name'), 'test')
 self.assertEqual(node.get('content'), content)

• Sending many input values to see if they cause errors

• This function tries many punctuation marks to see if any of them
alter the parsed structure of the HTML page

Fuzz Testing

def test_fuzzy_html(self):
 for fuzz in string.punctuation:
 content = 'q' + fuzz
 result = html_tag('meta', {'name': 'test', 'content': content})
 soup = BeautifulSoup(result, 'html.parser')
 node = soup.find('meta')
 self.assertEqual(node.get('name'), 'test')
 self.assertEqual(node.get('content'), content).

Security Regression Tests

• Regression testing is performed after every update to ensure
that the product is working correctly

• When a security bug is fixed, it often comes back in a later
update

• Solution: create a security regression test that detects the bug

• Recommended: write the test case first, before writing the fix

• Try more than a single test case, be more general

Security Regression Tests

• Don't just test Robert';)
• Try:

• Long strings

• " instead of '

• \ at end of name, etc.

SQL Injection Tests

• Test that known exploit requests no longer receive a response.

• Test with request byte counts greater than 16,384 (the maximum).

• Test requests with payloads of 0 bytes and the maximum byte size.

• Investigate whether other types of packets in the TLS protocol

could have similar issues, and if so test those as well.

Heartbleed

Availability Testing

• Security testing should include test cases to identify code

• With nonlinear performance degradation

• DoS vulnerabilities

Denial of Service (DoS)

• Use security test cases to determine a sensible limit on the rate
of input

• Then perform input validation to prevent larger inputs from
overloading the system

• An easy test is to use a system with artificially low memory
available

Resource Consumption

• Establish warning signs before limits are reached

• Integer overflow

• Storage capacity full

• Expiration of certificates

• Y2K bug

• Y2k38 bug

• On Jan 19, 2038 the Unix epoch will overflow

• Dates will change to 1970

Threshold Testing

• Many attacking devices working together to overwhelm the
target

• Not easy to mitigate in server software

• A matter for ISPs, load balancers, firewalls, etc.

Distributed Denial-of-Service Attacks  
(DDoS)

Best Practices for Security Testing

• Test-Driven Development

• Write tests concurrently with new code

• Best to make the tests first

• Integration Testing

• Ensures that the complete system works properly, with all units
working together

• Ex: log in, make sure the password doesn't appear in logs or
anywhere else exposed

Best Practices for Security Testing

• Security Testing Catch-Up

• A codebase lacking security tests

• Divide the job into pieces with incremental milestones

• Target the protection mechanisms and functional areas in order
of importance

• Review existing test cases

Best Practices for Security Testing

Ch 12

