Designing Secure Software

A Guide for Developers

Loren Kohnfelder

(yvewt by 1o Sar'xd

12 Security Testing

Topics

 What is Security Testing?

* Security Testing the GotoFail Vulnerability
* Functional Testing
* Functional Testing with the Vulnerabillity
* Security Test Cases

* The Limits of Security Tests

Topics

Writing Security Test Cases
Fuzz Testing

Security Regression Tests
Avallability Testing

Best Practices for Security Testing

What is Security Testing?

Security Testing

* Most testing checks that functionality works as intended

e Security testing ensures that operations that should not be
allowed aren't

» Types of security test cases
* Integer overflows
 Memory management problems
e Untrusted inputs
 Web security
« HTTP downgrade, CSRF, XSS

e Exception handling flaws

Security Testing the GotoFail Vulnerability

Complete Function

int VerifyServerKeyExchange(ExchangeParams params,
uint8_t *expected_hash, size t expected_hash_len) {
int err; HashCtx ctx = 0;
uint8_t *hash = 0;
size_t hash_len;
if ((err = ReadyHash(&ctx)) !'= 0) goto fail;

1 if ((err = SSLHashSHA1.update(ctx,

params.clientRandom, PARAM_LEN)) != 0) goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom,
PARAM_LEN)) != 0) goto fail;
goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.sighedParams,
PARAM_LEN)) != 0) goto fail;
if ((err = SSLHashSHA1 . .final(ctx, &hash, &hash_len)) != 0) goto fail;
if (hash_len != expected _hash_len) {
err = -106;
goto fail; }

4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {
err = -100; // Error code for mismatch }
SSLFreeBuffer(hash);

fail: if (ctx) SSLFreeBuffer(ctx); } return err;

Simplified Function

* Extra goto fail line makes it skip the SSL certificate verification
test

* Functional testing will pass--it works for valid SSL certificates

1 if ((err = SSLHashSHA1.update(ctx,
params.clientRandom, PARAM_LEN)) != 0) goto fail;
2 if ((err = SSLHashSHA1.update(ctx, params.serverRandom,
PARAM_LEN)) != 0) goto fail;
goto fail;
3 if ((err = SSLHashSHA1.update(ctx, params.signedParams,
PARAM_LEN)) != 0) goto fail;
4 if ((err = memcmp(hash, expected_hash, hash_len)) != 0) {
err = -100; // Error code for mismatch }

fail: return err;

Security Test Cases

* Try various types of invalid certificates and other invalid values

* Confirm that they are all rejected
 Rules of thumb for security tests
* |t's more important for security-crucial code

 Most important: check for denying access, rejecting input, or
otherwise failing

 Ensure that each of the key steps work correctly

Writing Security Test Cases

Security Test Cases

e Create them along with other unit tests
* Not only as a reaction to finding vulnerabilities

 Code must block improper actions, reject malicious inputs, deny
access, etc., like:

e Login fails with wrong password
e Accesing kernel resources from user space fails

* Invalid digital certificates are rejected

Testing Input Validation

* |nput field should be alphanumeric, 10-20 characters

* Check that a valid input of length 10 works, but an input of
length 9 or less falils.

 Check that a valid input of length 20 works, but an input of
length 21 or more falls.

* Check that inputs with one or more invalid characters always
fall.

XSS Example

* User submits a color parameter

https://www.example.com/page?color=green
 Page applies that color to some text

<hl style="color:green">This is colorful text.</hl>

vulnerable code

query params = urllib.parse.parse gs(self.parts.query)
color = query params.get('color', ['black’'])[0]

h = '<hl style="color:%s">This is colorful text.</hl>' % color

XSS Example

* This is the attack string

https://www.example.com/page?color=orange"><SCRIPT>alert("Gotcha!")</SCRIPT><span

$20id="dummy

* Resulting HTML

<hl style="color:orange"> <SCRIPT>alert("Gotcha!")</SCRIPT> This
is colorful text.

</h1l>

Testing for XSS Vulnerabilities

 |f output contains user-controlled input values
* Test for special characters like <>"

* The function below tests to make sure the parsed HTML
structure is the same when a parameter contains a "

 Adds a <meta> tag to the end of the document

e Verifies that it's found and unaltered

def test_parsed_htmil(self):
for content in ['x', 'x"']:
result = html_tag('meta’, {'name’': 'test', 'content': content})
soup = BeautifulSoup(result, 'html.parser’)
node = soup.find('meta’)
self.assertEqual(node.get('name’), 'test’)
self.assertEqual(node.get('content'), content)

Fuzz Testing

 Sending many input values to see if they cause errors

e This function tries many punctuation marks to see if any of them
alter the parsed structure of the HTML page

def test fuzzy html(self):
for fuzz in string.punctuation:

content = 'q' + fuzz
result = html_tag('meta’, {'name': 'test', 'content': content})
soup = BeautifulSoup(result, 'html.parser’)
node = soup.find('meta')
self.assertEqual(node.get('name’), 'test’)
self.assertEqual(node.get('content'), content).

Security Regression Tests

Security Regression Tests

 Regression testing is performed after every update to ensure
that the product is working correctly

 When a security bug is fixed, it often comes back in a later
update

* Solution: create a security regression test that detects the bug
« Recommended: write the test case first, before writing the fix

* Try more than a single test case, be more general

SQL Injection Tests

HL THIS 1S OH, DEAR - DID HE
YOUR SONS SCHOOL. | BREAK SOMETHING?
WVERE HAVING SOME

CoMPUTER TRowBLE. | N A “’AY

o im

* Don't just test Robert';)
e Try:

* Long strings
e "instead of '
* \ at end of name, etc.

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Students;=~ 7

!

~OH.YES UTNLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
<~ YOUVE LEARNED
¢ TOSANMZE YOUR
DATABASE INPUTS,

Heartbleed

Server

type=req

Heartbeat request size=16000

(16000 bytes) "Hello!"

"Secret1”,

"Secret2"+

Heartbeat response

(16000 bytes) "Hello! ...
Secret1 ... Secret2 ...

type=res
s1ze=16000

* TJest that known exploit requests no longer receive a response.
* Test with request byte counts greater than 16,384 (the maximum).
» Test requests with payloads of 0 bytes and the maximum byte size.

* Investigate whether other types of packets in the TLS protocol
could have similar issues, and if so test those as well.

Availability Testing

Denial of Service (DoS)

* Security testing should include test cases to identify code
* With nonlinear performance degradation

 DoS vulnerabilities

Resource Consumption

e Use security test cases to determine a sensible limit on the rate
of input

* Then perform input validation to prevent larger inputs from
overloading the system

* An easy test is to use a system with artificially low memory
available

Threshold Testing

e Establish warning signs before limits are reached
* Integer overflow
e Storage capacity full
e Expiration of certificates
* Y2K bug

* Y2k38 bug
 On Jan 19, 2038 the Unix epoch will overflow
e Dates will change to 1970

Distributed Denial-of-Service Attacks
(DDoS)

 Many attacking devices working together to overwhelm the
target

* Not easy to mitigate in server software

A matter for ISPs, load balancers, firewalls, etc.

Best Practices for Security Testing

Best Practices for Security Testing

 Test-Driven Development
* Write tests concurrently with new code
* Best to make the tests first
* Integration Testing

* Ensures that the complete system works properly, with all units
working together

 EX:log in, make sure the password doesn't appear in logs or
anywhere else exposed

Best Practices for Security Testing

* Security Testing Catch-Up
* A codebase lacking security tests
* Divide the job into pieces with incremental milestones

* Target the protection mechanisms and functional areas in order
of importance

 Review existing test cases

