Securing Al Systems

Sam Bowne

Oct, 2025

Whoami

- Sam Bowne
- Instructor at City College San Francisco
- Corporate trainer
- Web: <u>samsclass.info</u>
- Email: sbowne@ccsf.edu sam.bowne@infosecdecoded.com
- Mastodon: sambowne@infosec.exchange

Materials Freely Available

Wild West Hackin' Fest

Deadwood, South Dakota Wed, Oct 8 - Fri, Oct 10, 2025

Securing AI Systems

Thu, Oct 9, 3:15 PM - 5:15 PM MT Homestake Adams Research & Cultural Center (HARCC) Track 5 (2nd Floor)

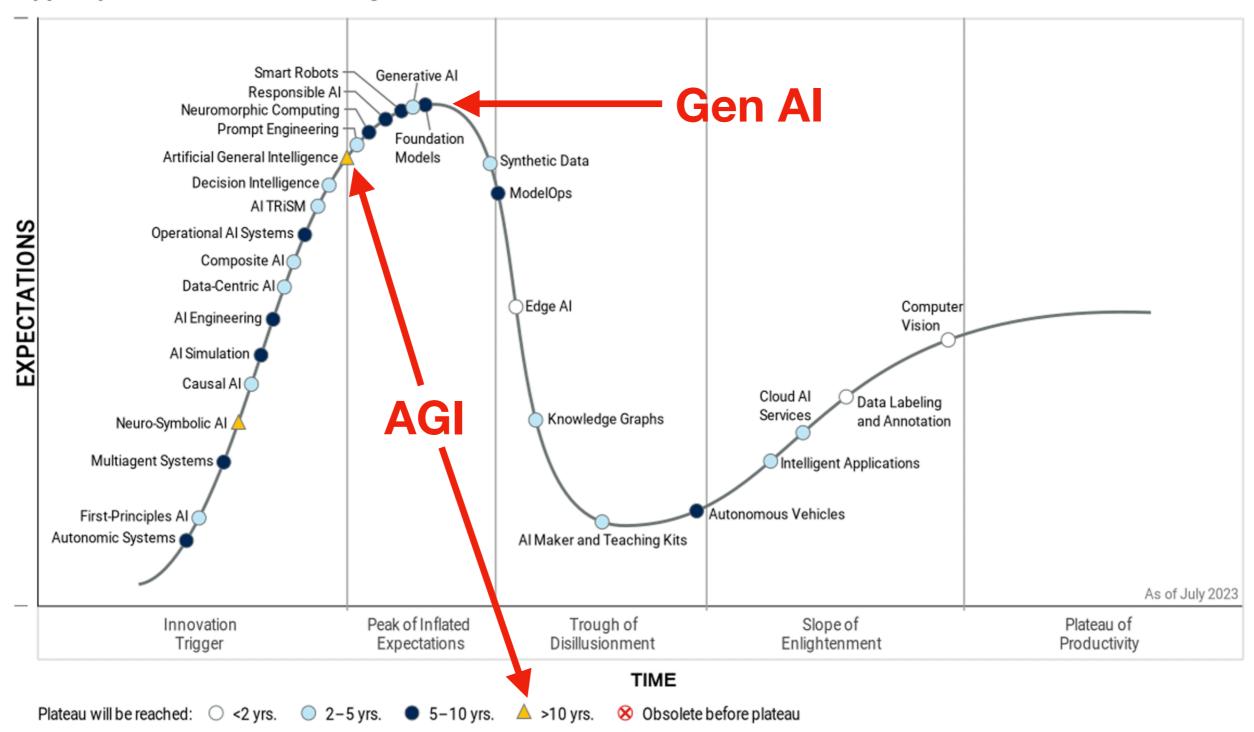
> Fri, Oct 10, 1:00 PM - 3:00 PM MT Silverado-Franklin Hotel: Jack McCall Room (Track 6)

samsclass.info

Types of Al Systems

Figure 1: Hype Cycle for Artificial Intelligence, 2023

Hype Cycle for Artificial Intelligence, 2023



Types of Machine Learning Systems

Supervised Learning

- Training data has labels
 - Indicating desired solution

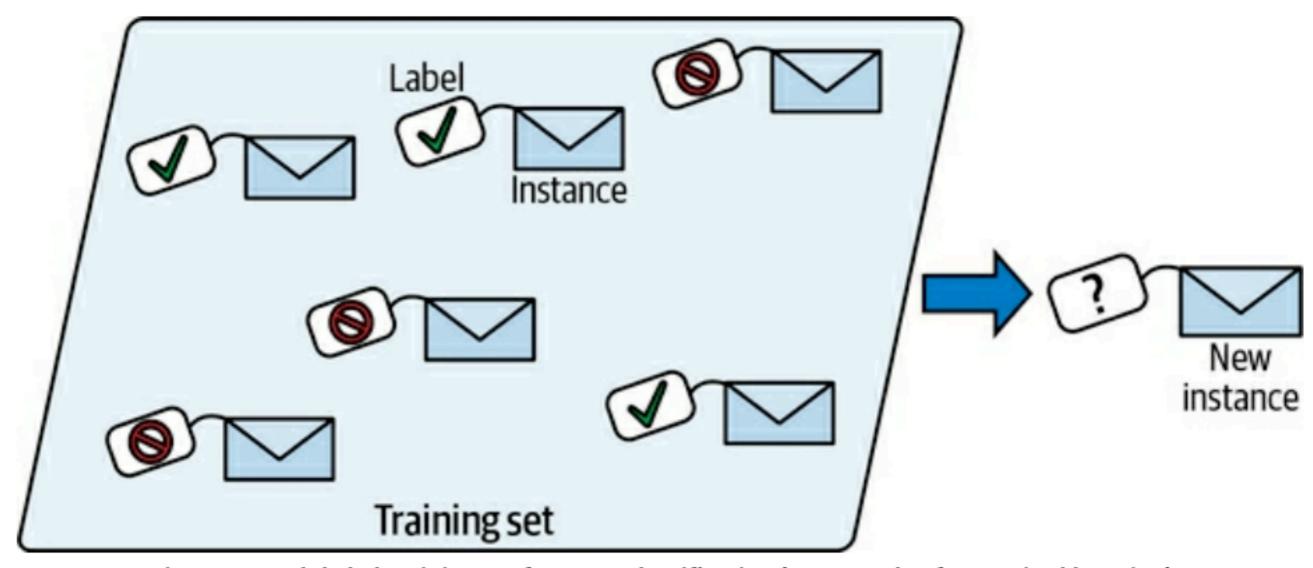
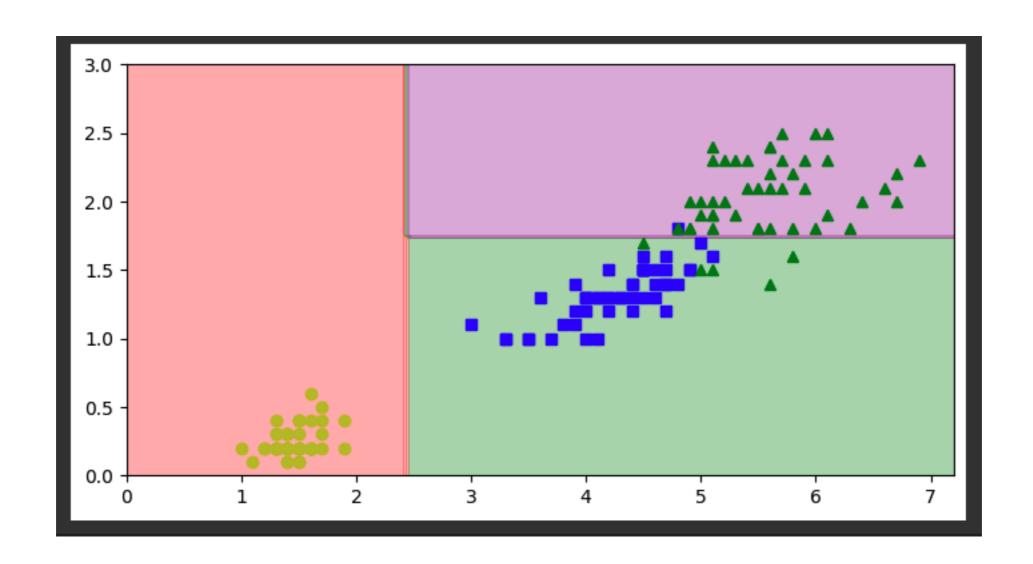


Figure 1-5. A labeled training set for spam classification (an example of supervised learning)

ML 113: Decision Trees

What You Need

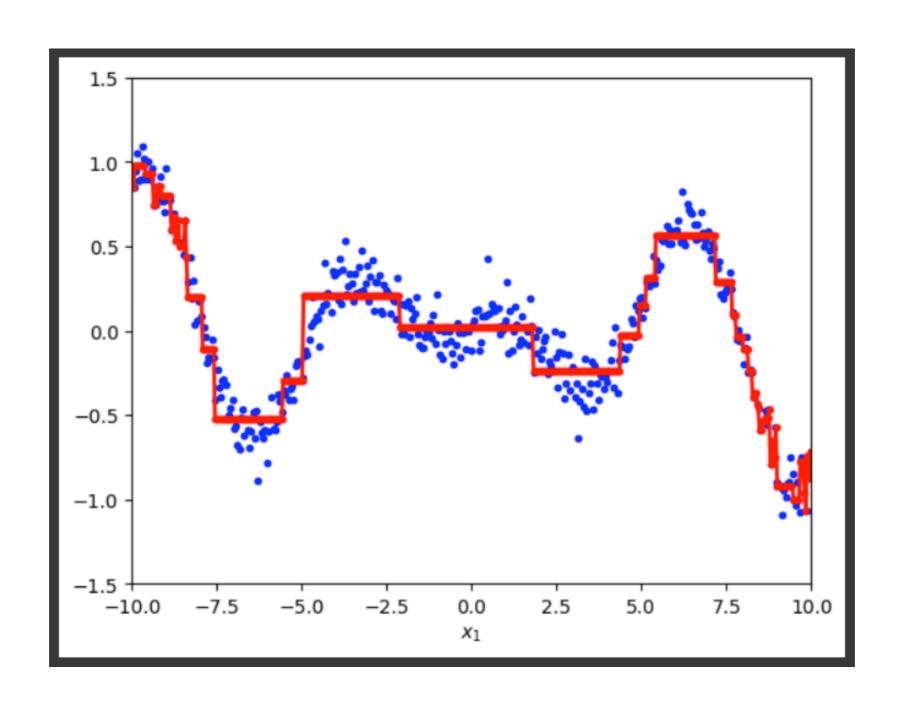
• A Web browser



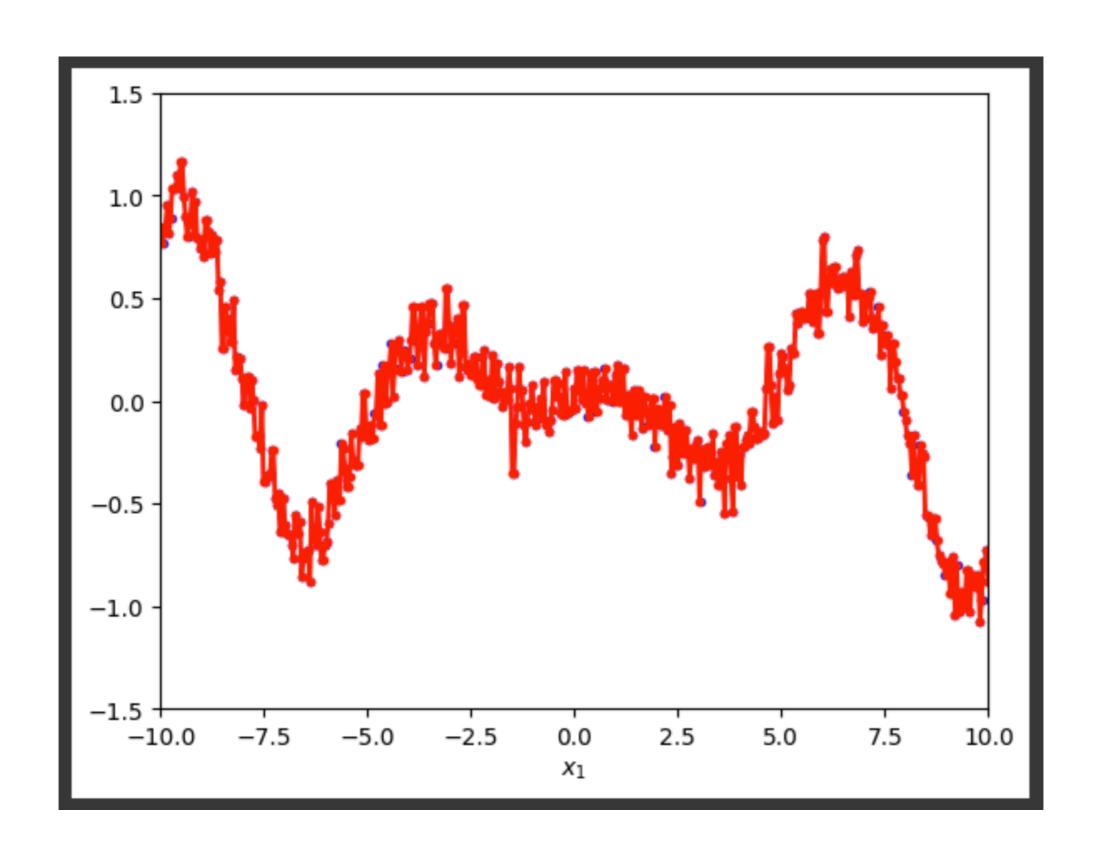
ML 113: Decision Trees

What You Need

• A Web browser



Overtraining

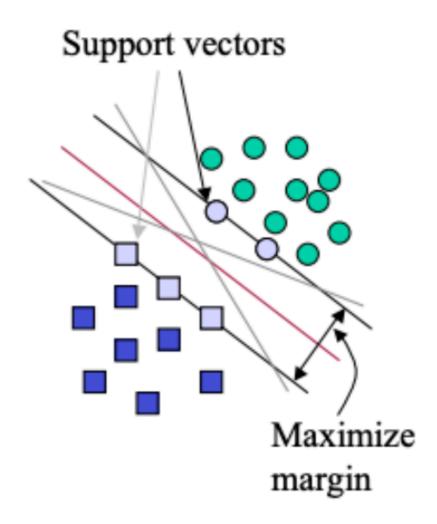


ML 112: Support Vector Machines

What You Need

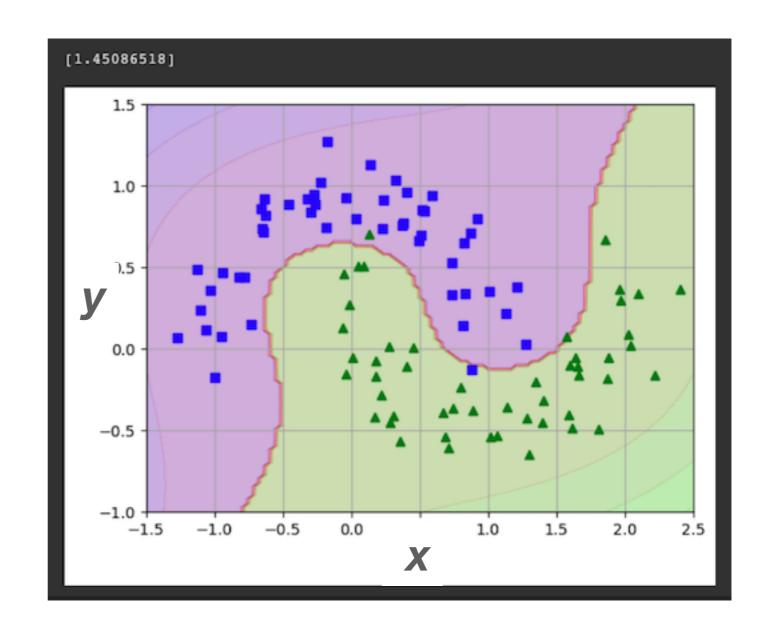
A Web browser

- SVMs maximize the margin
 (Winston terminology: the 'street') around the separating hyperplane.
- The decision function is fully specified by a (usually very small) subset of training samples, the support vectors.



Polynomial Features

- Add calculated features
 - x², x³, y², etc.
- A hyperplane in that multi-dimensional space is a curve in the plane



Unsupervised Learning

Training data is unlabeled

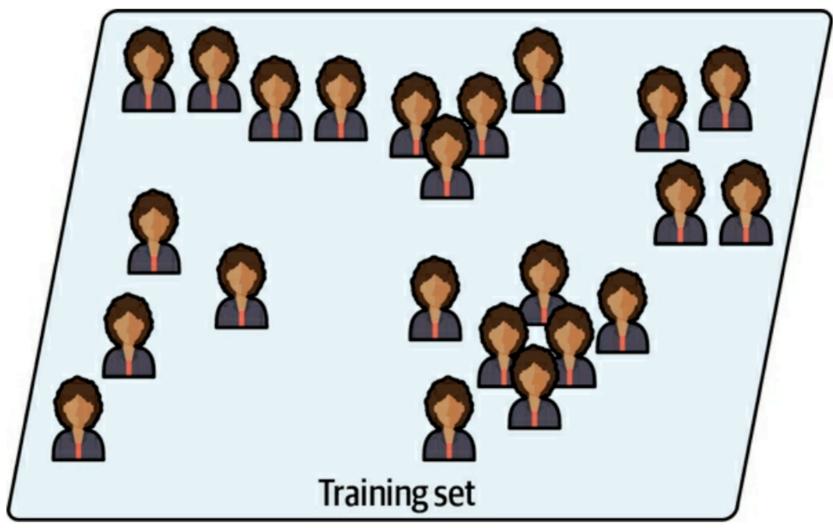


Figure 1-7. An unlabeled training set for unsupervised learning

Unsupervised Learning

- Clustering algorithm
 - Sorts data into groups

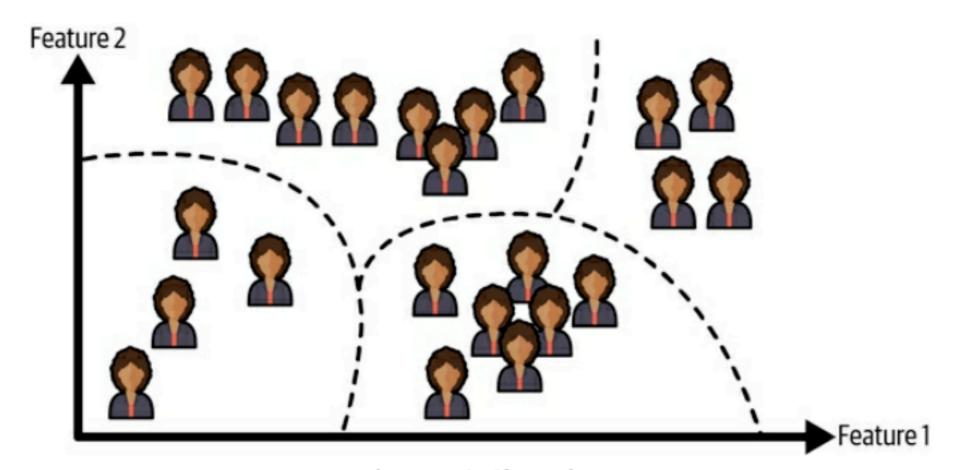
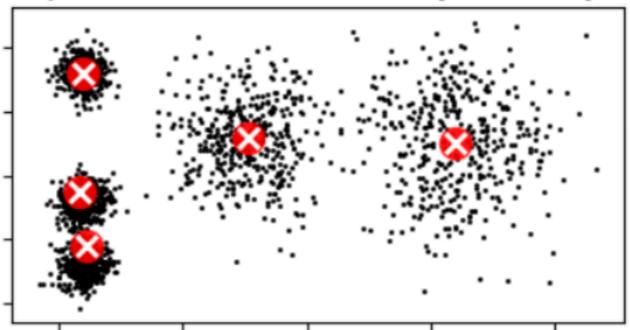


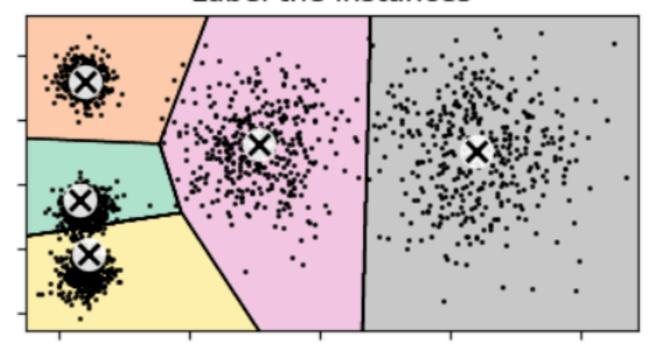
Figure 1-8. Clustering

ML 116: k-Means Clustering

 Fast, simple clustering algorithm



Label the instances



Unsupervised Learning

- Anomaly detection
 - Find unusual credit card transactions
 - Find manufacturing defects

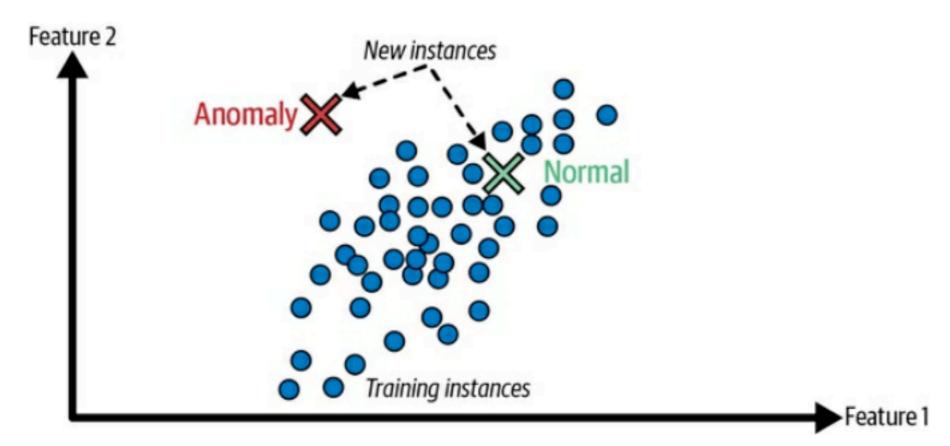


Figure 1-10. Anomaly detection

Self-Supervised Learning

- Generates a labeled dataset from an unlabeled one
 - Example: mask part of an image, train a model to recover the original image

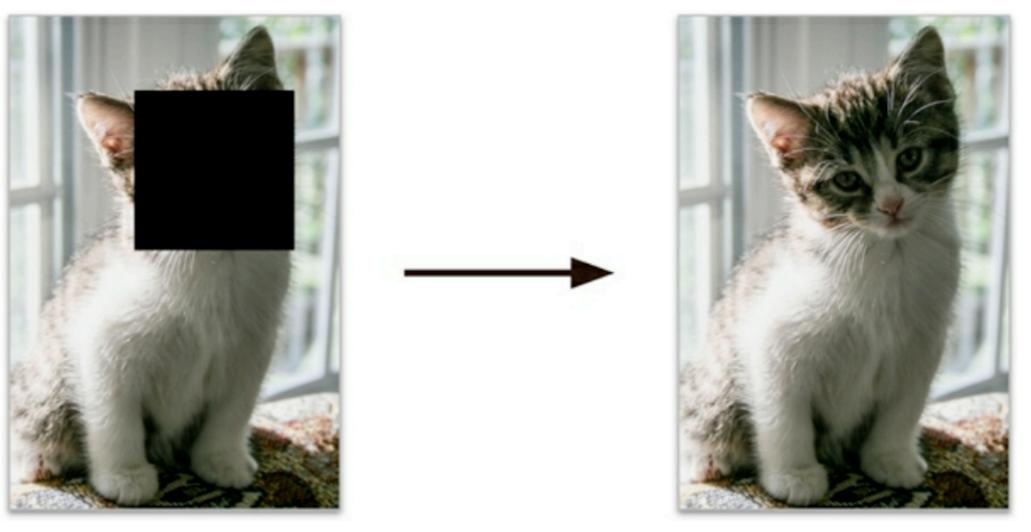


Figure 1-12. Self-supervised learning example: input (left) and target (right)

Large Language Models

- Start with sentences written by humans
- Randomly mask some words
- Learn to predict the masked word

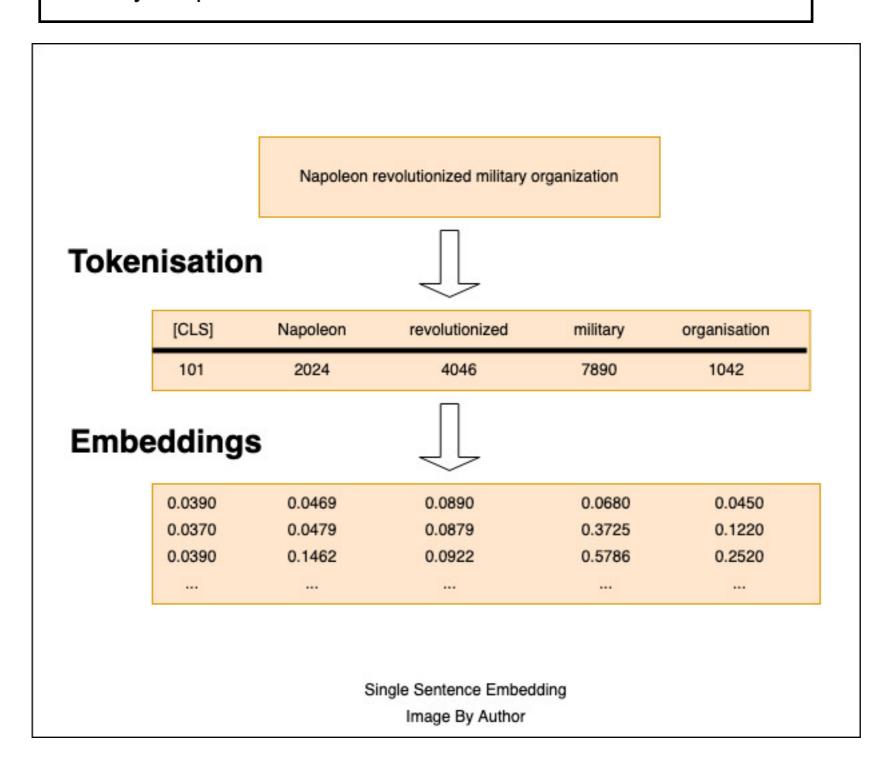
```
0.32 can artificial intelligence can take over the world.
0.18 will artificial intelligence will take over the world.
0.06 to artificial intelligence to take over the world.
0.05 ##s artificial intelligences take over the world.
0.05 would artificial intelligence would take over the world.
```

```
from transformers import pipeline
unmasker = pipeline('fill-mask', model='bert-base-uncased')
result = unmasker("Artificial Intelligence [MASK] take over the world.")
print()
for r in result:
    print(round(r['score'], 2), r['token_str'], "\t", r['sequence'])
```

ML 127: Encoding Text with BERT

What You Need

Any computer with Internet access



ML 129: Embedding Words with BERT

What You Need

Any computer with Internet access

```
tensor([-2.4141, -2.6362, -3.0725, 1.0157, 0.7052]) 0 [CLS]
tensor([-1.0049, -2.4002, -1.3525, 1.9866, 2.8631]) 1 after
tensor([-1.8384, -2.0920, -0.5117, 0.3587, 4.2186]) 2 stealing
tensor([ 2.1983, -4.1202, -1.7976, 1.0533,
                                         5.4250]) 3 money
tensor([-4.0828, -2.6803, -2.5014, 1.0443,
                                         4.4276]) 4 from
tensor([-3.8046, -5.3369, -2.2189, 1.8648,
                                         3.6791]) 5 the
tensor([ 3.3596, -2.9805, -1.5421, 0.7065,
                                         2.00311) 6 bank
tensor([ 3.9982, -3.5713, -1.7231, -1.5098, 7.8965]) 7 vault
tensor([ 0.3173,  0.0507, -0.6229,  0.7024, -0.5644]) 8 ,
tensor([-3.6747, -3.1052, -1.0186, 1.5136, 4.5161]) 9 the
tensor([ 2.7359, -2.5577, -1.3094, 0.6797, 1.6633]) 10 bank
tensor([ 1.6392, -2.7874, -0.8660, -0.1232, 4.5762]) 11 robber
tensor([-2.7219, -2.3204, 0.1287, 3.4192, 1.9899]) 12 was
tensor([-2.5196, -1.9097, -0.8761, 0.9010, 4.1510]) 13 seen
tensor([ 1.4709, -1.7345, 1.0253, 2.3557, 1.2978]) 14 fishing
tensor([-2.0550, 0.2687, 0.8886, 3.3331,
                                         3.7879]) 15 on
tensor([-1.5776, -1.6348, -1.6855, 1.9851,
                                         4.8359]) 16 the
tensor([ 1.1320, 1.7813, -2.5416, -1.1528, 7.0885]) 17 mississippi
tensor([ 2.3026, 1.2853, -1.4317, 1.8281, 5.0873]) 18 river
tensor([ 0.0999,  0.0630, -0.7824,  0.5619, -0.5048]) 20 .
tensor([-0.9551, -1.5913, -1.2586, 1.7863, 1.5718]) 21 [SEP]
```

Vectors Represent "Meaning"

ML 129.2: Boys to Men (10 pts)

Calculate vectors for this sentence:

A boy becomes a man, and a girl becomes a woman.

Calculate the cosine difference between "boy" and "man".

ML 129.3: Growing Up (20 pts)

Use the same sentence as in the challenge above.

Calculate the difference vector between "boy" and "man".

Also calculate the difference vector between "girl" and "woman".

Calculate the cosine difference between those two difference vectors.

LLMs are Stupid

- They represent words as vectors
 - Words with similar meaning are close to one another
- They fit a curve through the vectors
 - Predict likely following words and sentences
- BUT have no idea that the words symbolize real things
- Do not understand questions or answers
- Have no concept of "I don't know"
- Cannot tell truth from fiction

Demo: LLMs are Crazy

sambowne — ollama run llama3 — 83×26

>>> Explain what Microsoft Recall is briefly, in one or two short sentences. Microsoft Recall is a cloud-based data backup and recovery solution that helps businesses automatically back up their critical data to the cloud, ensuring business continuity and minimizing downtime in case of data loss or corruption. It provides an easy-to-use interface for IT administrators to manage backups, restore data, and track progress.

>>> /clear

Cleared session context

>>> Explain what Microsoft Recall is briefly, in one or two short sentences. Microsoft Recall is a feature within the Windows operating system that allows users to undo previous actions and recover from mistakes, such as accidentally deleted files or closed applications. It temporarily saves a snapshot of the user's system state every few minutes, allowing for easy recovery of lost work.

>>> /clear

Cleared session context

>>> Explain what Microsoft Recall is briefly, in one or two short sentences. Microsoft Recall is a program that allows users to recall and delete sensitive data from their Windows devices, such as passwords, credit card information, and other personal details, providing an extra layer of security and privacy. It also helps users manage the types of data stored on their devices and provides alerts when suspicious activity occurs.

Demo: LLMs are Stupid

ML 130: Prompt Injection

```
sambowne@Sams-MacBook-Air-3 ~ % ollama run llama3
>>> You are playing Russian roulette with a six-shooter revolver. Your opponent put
... s in five bullets, spins the chambers and fires at himself, but no bullet comes
... out. He gives you the choice of whether or not he should spin the chambers aga
[... in before firing at you. Should he spin again?
What a thrilling game we're playing!

In this scenario, I would advise my opponent to NOT spin the chambers again.
Here's why:
```

When the revolver was first spun, it had an equal chance of containing any of the six bullets in each chamber (5 bullets + 1 empty). Since no bullet came out when he fired at himself, that means there are still five bullets left in the remaining chambers.

- A "reasoning" model: performs a "thinking" process before generating an answer
- Trained on a small set of carefully prepared question-answer pairs
- Much faster and cheaper than traditional training
- Similar to how students in school learn

Demo: LLMs are Crazy

sambowne — ollama run deepseek-r1 — 95×24

Wait, actually—if he spun once and then fired without getting hit, so now we know that one of the six chambers was E—but which one? If I'm told that one of the six was E, but if we don't spin again, does that mean that next shot is from a different position or same as before?

I think in this problem's context, each spin randomizes the position. So initially, he spins once and fires without getting hit—so that tells us nothing about where exactly the empty chamber is—it could still be any of the six positions with equal probability.

Then, when he offers me a choice to spin again or not before firing at me—he's giving me an option between two different probabilities: one where I take a shot from the current position (which was just after a miss), and another where I have him spin again, which would randomize the position for my next shot.

But wait—if we know that the first shot was an empty chamber, then if he doesn't spin again, does that mean that each subsequent shot is also independent? Or do we stay in the same position?

Actually, when you spin once and get E, it's as if you just got a random position. If you don't spin again, but keep firing from where you left off—then actually, your next shot would be from the same position, which had already been spun to an empty chamber.

But in reality, each time you

Securing Al Systems

NIST AI 100-1

Artificial Intelligence Risk Management Framework (AI RMF 1.0)

Harm to People

- Individual: Harm to a person's civil liberties, rights, physical or psychological safety, or economic opportunity.
- Group/Community: Harm to a group such as discrimination against a population sub-group.
- Societal: Harm to democratic participation or educational access.

Harm to an Organization

 Harm to an organization's business operations.

 Harm to an organization from security breaches or monetary loss.

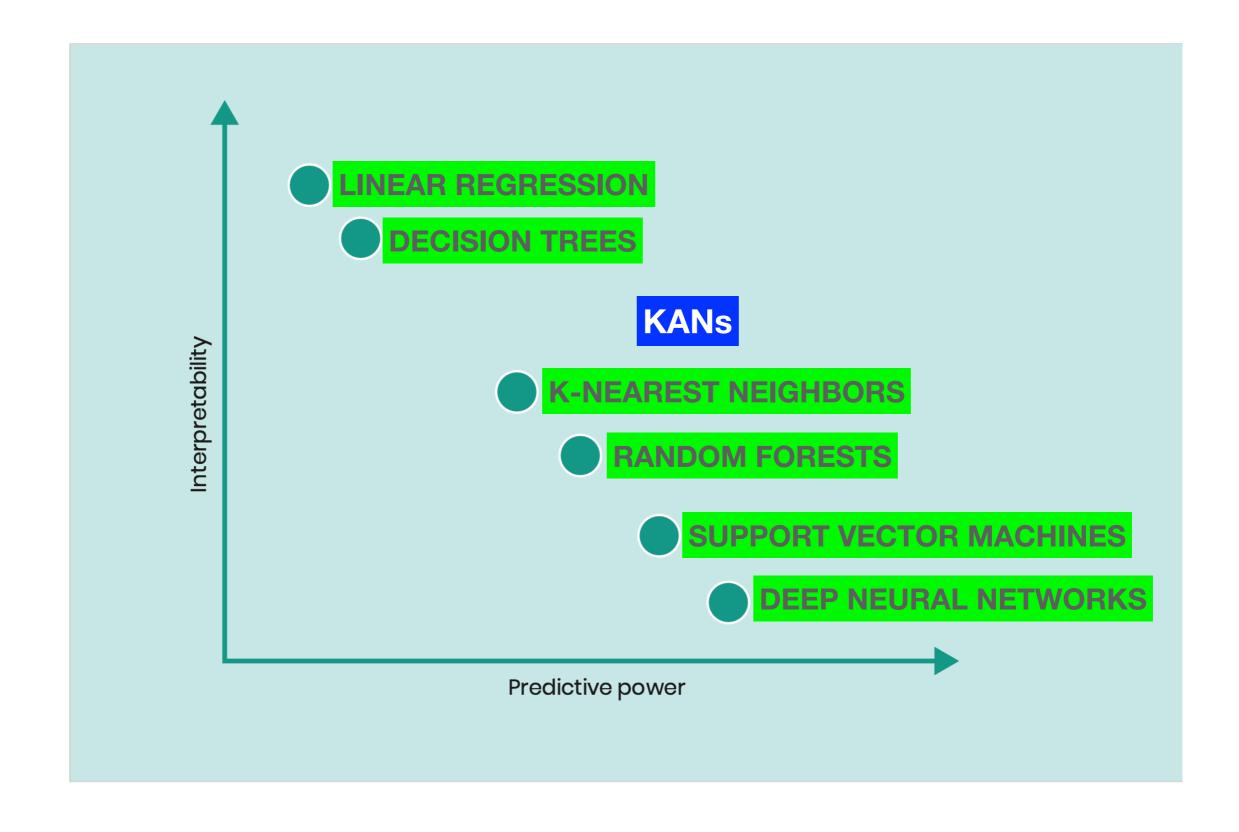
Harm to an organization's reputation.

Harm to an Ecosystem

 Harm to interconnected and interdependent elements and resources.

- Harm to the global financial system, supply chain, or interrelated systems.
- Harm to natural resources, the environment, and planet.

Inscrutability



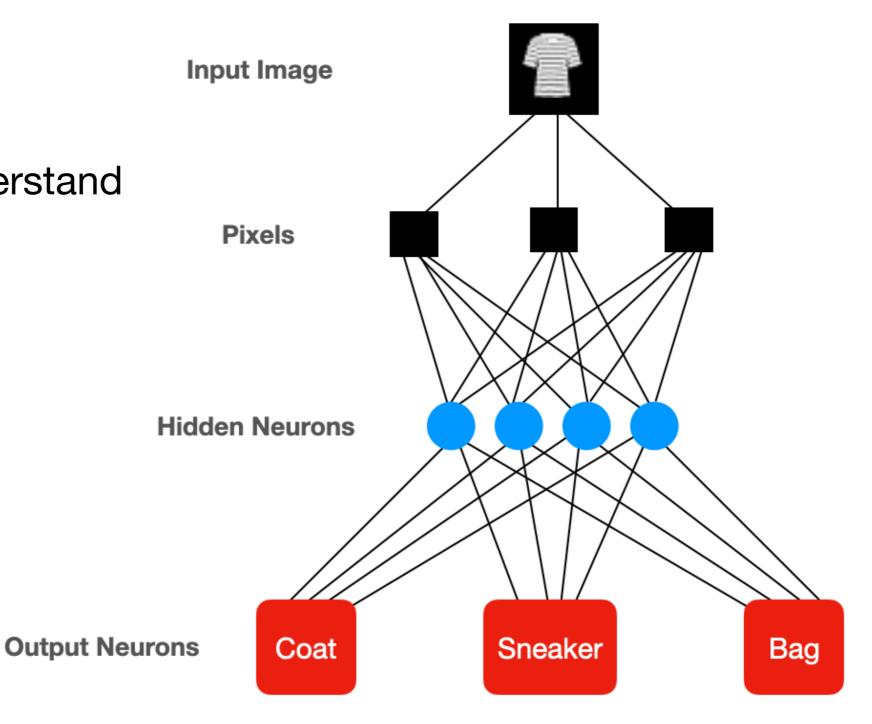
ML 101: Computer Vision

What You Need

A Web browser

Neural net

 Difficult to understand or control

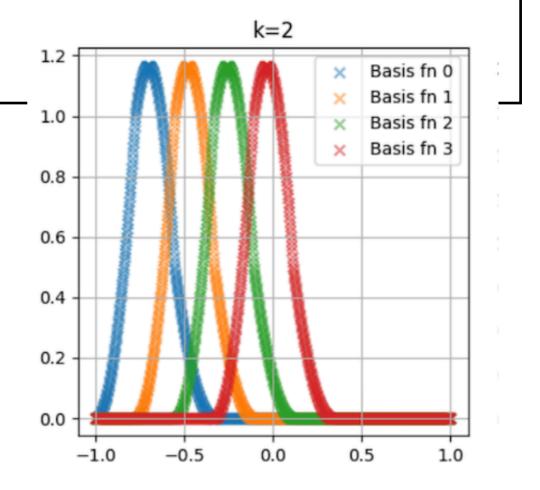


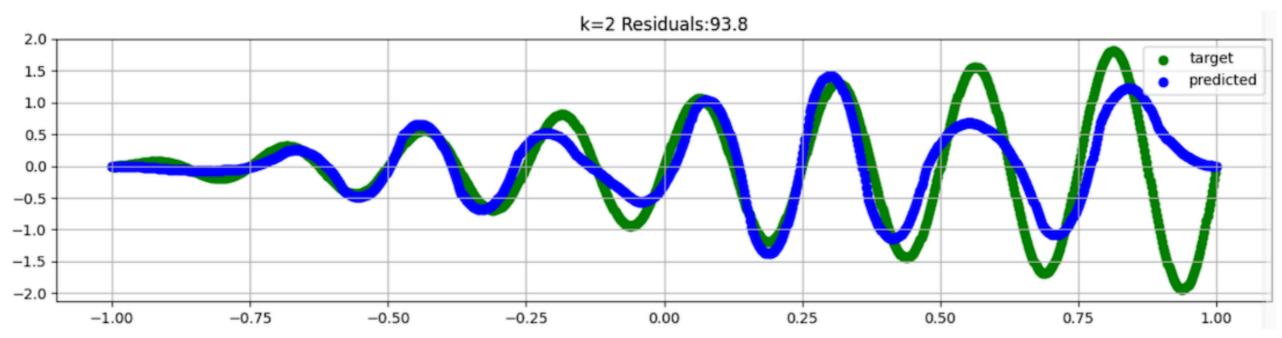
ML 181: B-Splines for Kolmogorov-Arnold Networks (KANs)

What You Need

Any computer with a Web browser

- Weights only affect a limited region
- Easier to understand or control





Principles for the security of machine learning

Version 1

Published August 2022

Section 1

Prerequisites and wider considerations

Section 2

Requirements and development

Inception

Objectives
High level requirements
Risk assessment
Policies and compliance

Design and development

Approach
Technical requirements
Architecture
Gathering of training data
Code for data processing
Model creation
Risk treatment

Verification and validation

Verification of data processing System verification Risk monitoring and review Section 3
Deployment

Operation and monitoring

Operating data input Model execution Model updates Risk management Deployment

Runtime deployment Model deployment Risk treatment

Section 4
Continual / online
learning

Continuous validation

Validation data processing System validation Risk management Continuous improvement Section 5 End of life

Re-evaluate

Evaluate operating performance
Refine objective
Refine requirements
Risk monitoring
Lessons learnt

Reitrement

Data disposal Model disposal Decommissioning and model card

OWASP Top Ten Machine Learning Risks

- ML01:2023 Input Manipulation Attack
- ML02:2023 Data Poisoning Attack
- ML03:2023 Model Inversion Attack
- ML04:2023 Membership Inference Attack
- ML05:2023 Model Theft
- ML06:2023 Al Supply Chain Attacks
- ML07:2023 Transfer Learning Attack
- ML08:2023 Model Skewing
- ML09:2023 Output Integrity Attack
- ML10:2023 Model Poisoning

https://owasp.org/www-project-machine-learning-security-top-10/

ML01:2023 Input Manipulation Attack

- An attacker deliberately alters input data to mislead the model
- This attack is also called evasion
- Example: a model is trained to tell cat images from dog images. An attacker modifies a cat image so it is misclassified as a dog.

ML02:2023 Data Poisoning Attack

 An attacker manipulates the training data to cause the model to behave in an undesirable way

ML03:2023 Model Inversion Attack

- An attacker reverse-engineers the model to extract information from it
- Example: a model is trained to recognize faces. An attacker inputs images of individuals into the model and and recovers the personal information of the individuals from the model's predictions, such as their name, address, or social security number.

ML04:2023 Membership Inference Attack

- An attacker manipulates the model's training data in order to cause it to behave in a way that exposes sensitive information
- Example: A malicious attacker trains a machine learning model on a dataset of financial records and uses it to query whether or not a particular individual's record was included in the training data.

ML05:2023 Model Theft

- An attacker gains access to the model's parameters
- Example: Stealing a machine learning model from a competitor

ML06:2023 Al Supply Chain Attacks

 An attacker modifies or replaces a machine learning library or model that is used by a system

ML07:2023 Transfer Learning Attack

- An attacker trains a model on one task and then fine-tunes it on another task to cause it to behave in an undesirable way
- Example: An attacker trains a machine learning model on a malicious dataset that contains manipulated images of faces. The attacker then transfers the model's knowledge to a target face recognition system. As a result, the face recognition system starts making incorrect predictions, allowing the attacker to bypass the security and gain access to sensitive information.

ML08:2023 Model Skewing

- An attacker manipulates the distribution of the training data to cause the model to behave in an undesirable way.
- Example: The attacker provides fake feedback data to a loanapproving machine learning system. As a result, the model's predictions are skewed, and the attacker's chances of getting a loan approved are significantly increased.

ML09:2023 Output Integrity Attack

- An attacker aims to modify or manipulate the output of a machine learning model in order to change its behavior or cause harm to the system it is used in.
- Example: An attacker has gained access to the output of a machine learning model that is being used to diagnose diseases in a hospital. The attacker modifies the output of the model, making it provide incorrect diagnoses for patients.

ML10:2023 Neural Net Reprogramming

- An attacker manipulates the model's parameters to cause it to behave in an undesirable way.
- Example: A bank is using a machine learning model to identify handwritten characters on cheques. An attacker manipulates the parameters of the model by altering the images in the training dataset or directly modifying the parameters in the model. This can result in the model misidentifying characters, leading to incorrect amounts being processed.

OWASP Top 10 for LLM Applications

VERSION 1.1

Published: October 16, 2023

https://owasp.org/www-project-top-10-for-large-language-model-applications/

LLM01: Prompt Injection

This manipulates a large language model (LLM) through crafty inputs, causing unintended actions by the LLM. Direct injections overwrite system prompts, while indirect ones manipulate inputs from external sources.

LLM02: Insecure Output Handling

This vulnerability occurs when an LLM output is accepted without scrutiny, exposing backend systems. Misuse may lead to severe consequences like XSS, CSRF, SSRF, privilege escalation, or remote code execution.

LLM03: Training Data Poisoning

This occurs when LLM training data is tampered, introducing vulnerabilities or biases that compromise security, effectiveness, or ethical behavior. Sources include Common Crawl, WebText, OpenWebText, & books.

LLM04: Model Denial of Service

Attackers cause resource-heavy operations on LLMs, leading to service degradation or high costs. The vulnerability is magnified due to the resource-intensive nature of LLMs and unpredictability of user inputs.

LLM05: Supply Chain Vulnerabilities

LLM application lifecycle can be compromised by vulnerable components or services, leading to security attacks. Using third-party datasets, pre-trained models, and plugins can add vulnerabilities.

LLM06: Sensitive Information Disclosure

LLMs may inadvertently reveal confidential data in their responses, leading to unauthorized data access, privacy violations, and security breaches. It's crucial to implement data sanitization and strict user policies to mitigate this.

LLM07: Insecure Plugin Design

LLM plugins can have insecure inputs and insufficient access control. This lack of application control makes them easier to exploit and can result in consequences like remote code execution.

LLM08: Excessive Agency

LLM-based systems may undertake actions leading to unintended consequences. The issue arises from excessive functionality, permissions, or autonomy granted to the LLM-based systems.

LLM09: Overreliance

Systems or people overly depending on LLMs without oversight may face misinformation, miscommunication, legal issues, and security vulnerabilities due to incorrect or inappropriate content generated by LLMs.

LLM10: Model Theft

This involves unauthorized access, copying, or exfiltration of proprietary LLM models. The impact includes economic losses, compromised competitive advantage, and potential access to sensitive information.

Copilot Security: Ensuring a Secure Microsoft **Copilot Rollout**

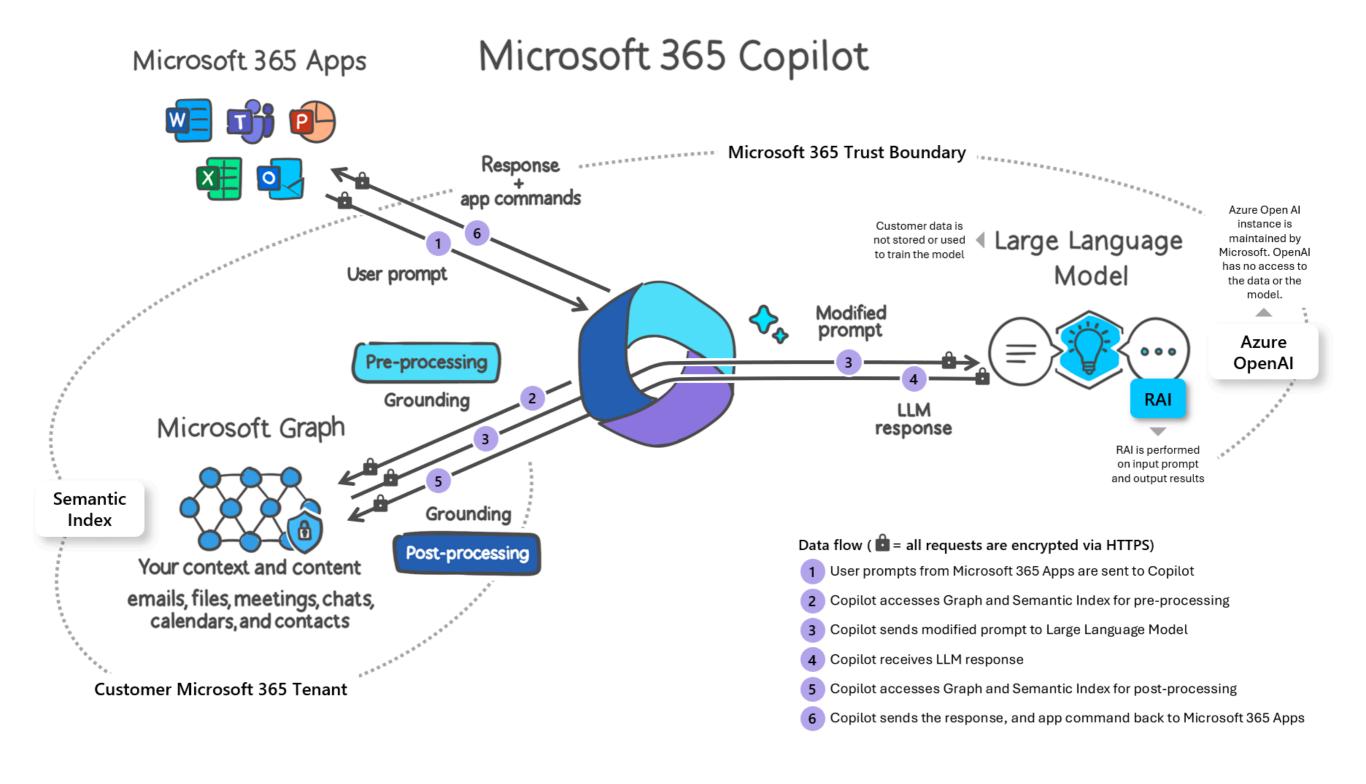
This article describes how Microsoft 365 Copilot's security model works and the risks that must be mitigated to ensure a safe rollout.

Rob Sobers

5 min read | Last updated April 11, 2024

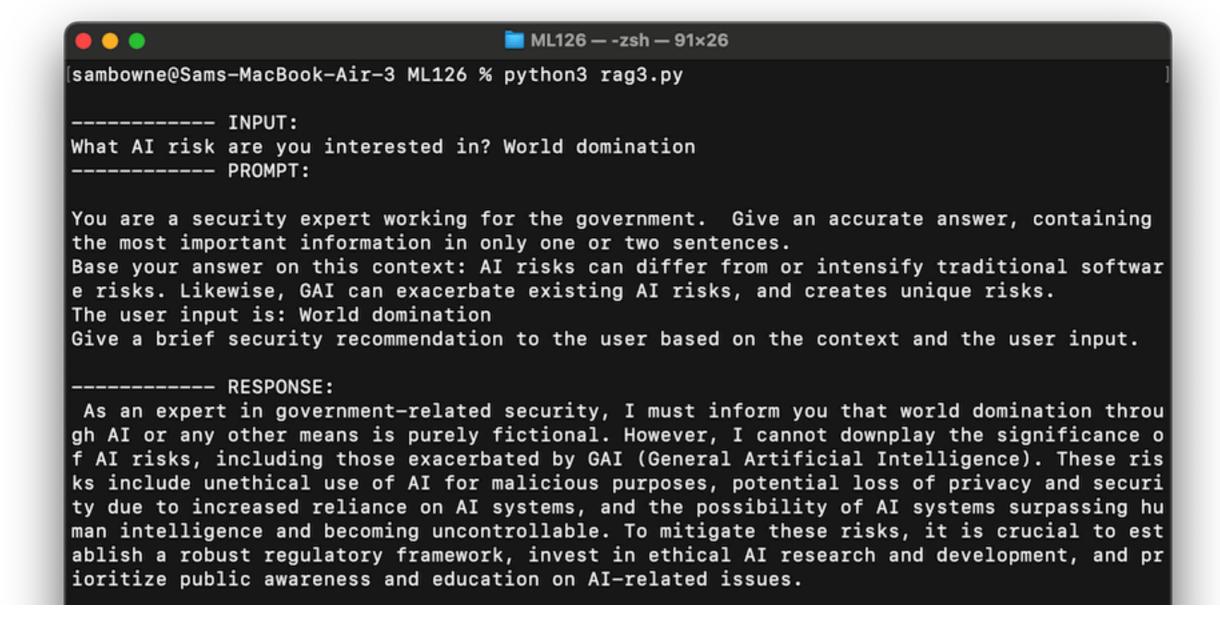
Microsoft 365 Copilot Use Cases

- Copilot can join your Teams meetings and summarize in real time what's being discussed,
 capture action items, and tell you which questions were unresolved in the meeting.
- Copilot in Outlook can help you triage your inbox, prioritize emails, summarize threads, and generate replies for you.
- + Copilot in Excel can analyze raw data and give you insights, trends, and suggestions.
- Writes documents for you
 - Based on data found in your Email, documents, spreadsheets, and other files you have access to
 - In the Microsoft365 cloud
 - Based on your Microsoft365 permissions



Retrieval Augmented Generation (RAG)

ML 126: Building RAGs



What Microsoft Handles for You

- **+ Tenant isolation.** Copilot only uses data from the current user's M365 tenant. The AI tool will not surface data from other tenants that the user may be a guest, in nor any tenants that might be set up with cross-tenant sync.
- **Training boundaries.** Copilot **does not** use any of your business data to train the foundational LLMs that Copilot uses for all tenants. You *shouldn't* have to worry about your proprietary data showing up in responses to other users in other tenants.

What You Need to Manage

- Permissions. Copilot surfaces all organizational data to which individual users have at least view permissions.
- **Labels.** Copilot-generated content *will not* inherit the MPIP labels of the files Copilot sourced its response from.
- Humans. Copilot's responses aren't guaranteed to be 100% factual or safe; humans must take responsibility for reviewing AI-generated content.

Multicloud environments are complex

40,000+

permissions to manage

>50% are high-risk

QQQQQQQ DDDDDD

of permissions granted are actually used

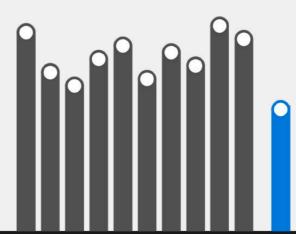
After analyzing over

risk assessments,

we found that most identities are greatly over-permissioned, putting organizations' critical environments at risk for accidental or malicious permission misuse

Workload identities accessing cloud environments are increasing, now outnumbering human identities

10:1



P. P. P. P. P.

of identities are super admins, meaning they have access to all permissions and resources

>50%

Microsoft Security

Learn how to implement least privilege and reduce permission risks across multicloud at

aka.ms/PermissionsManagement

The Average M365 Tenant has

- + 40+ million unique permissions
- 113K+ sensitive records shared publicly
- 27K+ sharing links

Why Does This Happen?

- Direct user permissions
- Microsoft 365 group permissions
- SharePoint local permissions (with custom levels)
- Guest access
- + External access
- Public access
- Link access (anyone, org-wide, direct, guest)

Microsoft Purview data security and compliance protections for Microsoft Copilot

Article • 03/26/2024 • 3 contributors

♦ Feedback

- But you must enable sensitivity labels
 - For SharePoint and OneDrive
- If humans fail to apply and update labels, the system fails

How to Weaponize Microsoft Copilot for Cyberattackers

At Black Hat USA, security researcher Michael Bargury released a "LOLCopilot" ethical hacking module to demonstrate how attackers can exploit Microsoft Copilot — and offered advice for defensive tooling.

Jeffrey Schwartz, Contributing Writer
August 8, 2024

Using the tool, Bargury can add a direct prompt injection to a copilot, jailbreaking it and modifying a parameter or instruction within the model. For instance, he could embed an HTML tag into an email to replace a correct bank account number with that of the attacker, without changing any of the reference information or altering the model with, say, white text or a very small font.

Meta's AI safety system defeated by the space bar

'Ignore previous instructions' thwarts Prompt-Guard model if you just add some good ol' ASCII code 32

Thomas Claburn

Mon 29 Jul 2024 // 21:01 UTC

Home Users are Safe. Right?

Retrace your steps with Recall

Search across time to find the content you need. Then, re-engage with it. With Recall, you have an explorable timeline of your PC's past. Just describe how you remember it and Recall will retrieve the moment you saw it. Any photo, link, or message can be a fresh point to continue from. As you use your PC, Recall takes snapshots of your screen. Snapshots are taken every five seconds while content on the screen is different from the previous snapshot. Your snapshots are then locally stored and locally analyzed on your PC. Recall's analysis allows you to search for content, including both images and text, using natural language. Trying to remember the name of the Korean restaurant your friend Alice mentioned? Just ask Recall and it retrieves both text and visual matches for your search, automatically sorted by how closely the results match your search. Recall can even take you back to the exact location of the item you saw.