Velociraptor for Incident Response

°¢ |ISACA.

San Francisco Chapter

2021 SF ISACA Fall Conference

Sam Bowne, Oct 26, 2021

* Instructor at City College San Francisco
e Founder of Infosec Decoded, Inc.
 (Custom security training for corporations

 Presented at DEF CON, Black Hat, HOPE, etc.

Materials

e This talk and all the materials for these
projects are freely available at samsclass.info

£2 CNIT 141: Cryptography for Cor +

C 83 | @ samsclass.info/141/141_F21.shtml D ARE ® > Q]| 4

CNIT 141: Serious
> Cryptography for E'.‘Cﬁiﬂgm'dfﬂhy

. Computer Networks |

Mastermg

B]_t C O]_ - Fi(m Sam Bowne

Page

W‘— 71461 Wed 6:10-09:00 PM
Andreas M. Antonopoulos To attend: https://twitch.tv/sambowne

Summary

e Blockchain: a distributed database

e Smart contract: software running on the
blockchain

e Solidity: popular smart contract programming
language

e Many security flaws
¢ Glow: new language, much safer

Demo: Blockchain

< C (0 @& Secure https://anders.com/blockchain/blockchain.htm Y 9 Lo)
Blockchain Demo Hash Block Blockchain Distributed Tokens Coinbase
Block: # 1 Block: # 2 Block: # 3
Nonce: 5056 Nonce: 35230 Nonce: 12937
Data: HELLO Data: Data:
Prev: 00000000000000000000000000000¢ Prev: 00006c59442c07cb70ec3c3252¢c251 Prev: 40bb5d3d12c58701e8
Hash: 00006c59442c07cb70ec3c3252c25!1 Hash: 40bb5d3d12c58701e8198a462a428: Hash: 26eelc05b80£c64975

e https://andersbrownworth.com/blockchain/blockchain

https://andersbrownworth.com/blockchain/blockchain

Demo: Faucet

Q @ @ Home % Faucet.sol
Version of Soliadi
pragma solidity 0.6.

- . M > p s = pu . 4
Our rirst contract

contract Faucet |{

A assd smen
ACCep ar

receive() external payable {}

Y oM Na

prap— TeT o
L& Ll(\\) "

y

S 424 nitrd adharm 4 P2 D [l . ,
Ul Ve oOUl evrne O 4 VOrle wno SKS

function withdraw(uint withdraw_amount) public {

s 1 »r .M - T »n
qaraowal amoun

draw_amount <= 100000000000000) ;

- J o -y ~) 2 5 o A o » 4 o adeadd
Send the agmount TO the aadaress that eguested

msg.sendef" f"t:ﬂ‘lff '-(/.t ‘."(1(“’:,\ amo .Y“):

!
g
5

other contracts

- address public minter;
e O mapping (address => uint) public balances;
I I\ l] . 'y :
cvents alLlow clients (0 Specl

contract changes vou

event Sent(address from, address to, uint amount);

(onstructor code 1s only ru
1S created

constructor() {
minter = msg.sender,;

" ™~ -y ; - ~ » -1 . ' M o~ . " . N
2ends an amount 01 I iteéd colns tOo an qQaadress
@ s 1 v . 2 ~1T] ; . . m 7145

Can only be called by the contract creator

function mint(address receiver, uint amount) public {
juire(msg.sender == minter);
ire(amount < 1e60);

balances[receiver] += amour

tO proviae
failed. The
1€ TunciiLon

lance(uint requested, uint available);

Fl S

caller to an address
function send(address receiver, uint amount) public {
if (amount > balances[msg.sender])
revert InsufficientBalance({

available: balances[msg.sender]

requested: amount

B;

balances[msg.sender] -= amount
balances[receiver] += amount;
emit Sent(msg.sender, recei

emo: Fallback Function

contract Fallback {
address payable public owner;
uint256 public bal;

constructor() { owner = payable(msg.sender); }
modifier onlyOw
require(

msg.sender == owner,
"caller i1s not the owner"

}

function contribute() public payable { }

function withdraw() public onlyOwner { owner.transfer(address(this).balance); }

fallback() external payable {
require(msg.value > 0);
owner = payable(msg.sender);

}

function getBalance() public returns(uint) { bal = address(this).balance; }

Demo: Auction

contract Auction {
address payable public currentlLeader;
uint public highestBid;
event logBid(address _address, uint _bid);

function bid() public payable {
emit logBid(msg.sender, msg.value);
require(msg.value > highestBid);

require(currentlLeader.sendChighestBid));

currentLeader = payable(msg.sender);
highestBid = msg.value;

}

contract Attacker {
Auction auction_address:
event LogFallback(uint count, uint balance):

constructor(address auction) payable { auction_address = Auction(auction); }

function win() public payable { auction_address.bid{value: msg.value}(); }

fallback () payable external {
revert();
}

function getBalance() public returnsCuint) {
address _this = address(this);
return _this.balance;

Demo: Reentrancy Attack

DAO: Over 1000 lines of Solidity

Malicious Proxy Contract

Initiate Withdrawal

\

fallback function

overridden by the developer,
triggers another withdraw

Ether transfer
send Ether, pass along gos

update balance

internal staote update

DEPLOY & RUN TRANSACTIONS &

] transferFrom
e I I l O - 21 OxEe99fF0f773C72bB24501c2

0xB8B68CB296E43f64c02da5ac

PoWHCoin P 1
Integer
Underflow

balanceOf

balanceOfOld 0x921f4c6e8d6Bad4642C3(

Contract is 306 lines of Solidity

Glow

Alice Buy signature interactions Bob
«Buyer» 8 «Seller»
Blocklchain Not.ary
payForSignature
+ on this Digest with this Price)i
Can you please Sign this Digest
:sign Digest
(signed Digest :
« publish and verify the signature:
+ Withdraw deposit K
«Buyer» Blockchain «Seller»

1 . ¥

Alice Bob

oo Um b WNM

Glow Contract

#lang glow

@interaction([Buyer, Seller])

let payForSignature = (digest : Digest, price : Nat) => {
deposit! Buyer -> price;
@Qverifiably! (Seller) let signature = sign(digest);
publish! Seller -> signature;
verify! signature;
withdraw! Seller <- price;

Glow Contract

#lang glow

@interaction([Buyer, Seller])

let payForSignature = (digest : Digest, price : Nat) => {
deposit! Buyer -> price;
@verifiably! (Seller) let signature = sign(digest);
publish! Seller -> signature;
verify! signature;
withdraw! Seller <- price;

}

oo~k WN-

Line-By-Line Explanation

2 Buyer and seller have agreed to the terms of this sale. They both know what the signature is about, and they want to conduct this sale.
3 The digest of the message to sign is a parameter of the interaction, as is the convened price.

4 The buyer deposits the money according to the price.

5 The seller signs, but it is private only to the seller.

6 The signature is made public for everyone to see.

7 The signature is verified by everyone in a way that the contract enforces.

8 Finally, the money is transferred to the seller.

Faillure Cases

#lang glow

@interaction([Buyer, Seller])

let payForSignature = (digest : Digest, price : Nat) => {
deposit! Buyer -> price;
@Qverifiably! (Seller) let signature = sign(digest);
publish! Seller -> signature;
verify! signature;
withdraw! Seller <- price;

Voo Um b WNM-

e Buyer Never Pays

* Process stops at line 4, so seller never
creates signature. The interaction times out
and is cancelled. No funds are exchanged.

Faillure Cases

#lang glow

@interaction([Buyer, Seller])

let payForSignature = (digest : Digest, price : Nat) => {
deposit! Buyer -> price;
@Qverifiably! (Seller) let signature = sign(digest);
publish! Seller -> signature;
verify! signature;
withdraw! Seller <- price;

Voo Um b WNM-

e Buyer Pays, but Seller Never Signs
e At line 4, the payment is deposited (into escrow).
* The process stops at line 5.

e The interaction times out and the funds are returned to the
Buyer.

Faillure Cases

#lang glow

@interaction([Buyer, Seller])

let payForSignature = (digest : Digest, price : Nat) => {
deposit! Buyer -> price;
@Qverifiably! (Seller) let signature = sign(digest);
publish! Seller -> signature;
verify! signature;
withdraw! Seller <- price;

}

Voo Um b WNM-

e Seller Sends Invalid Signature

e Process stops at line 7 because the signature does
not validate.

e The interaction times out and the funds are returned
to the Buyer.

Questions

