
NOTE/DISCLAIMER: 
 
These plans work great for locking it down all the way. 

Nothing got in or out, 0% pwnage here...but you need to 
actually keep services usable. 

This plan/Fail2ban locks everything down, right away. 
Best not to get pwned, so deploy it (or a something better), 
and use it as an opportunity to get your services back up 
safely.  
 
  



 
CHECKLIST - FIRST FIFTEEN MINUTES*                                    *consider taking a snapshot first... 

1. Log into Debian box from local machine 

localbox:~admin$   ssh root@172.20.241.39  
2. Debian might not have sudo- install sudo, Snort, and Fail2Ban 

root@server:~#   apt-get  update  ;  apt-get  install  sudo  snort  fail2ban  

root@server:~#   apt-get  --only-upgrade  install  exim4  -OR- ??rmaildaemon 

3. Create a new user, and give that user sudo privileges 

root@server:~#   adduser  newUserName 

root@server:~#   adduser  newUserName  sudo  -OR- sudo  adduser  foo  sudo 

4. Edit sudoers file; make sure newly created account is present 

root@server:~#   sudo  nano  /etc/sudoers 

Look for this part of the file, newUserName  should match root 

#  User  privilege  specification 

root         ALL=(ALL:ALL)  ALL 

newUserName  ALL=(ALL:ALL)  ALL 

Make sure this line is in place 

#  Allow  members  of  group  sudo  to  execute  any  command 

%sudo    ALL=(ALL:ALL)  ALL 

Be sure to remove this line, in order to use sudo and be prompted for a password 

NOPASSWD:ALL 

5. Secure Root, Lock SSL Root Access, Change SSH Port, and Restart SSH 

root@server:~#   sudo  passwd  -l  root 

root@server:~#   nano  /etc/ssh/sshd_config 

Uncomment these lines 

#PermitRootLogin  no 

#22  ( change the port, to one you'll remember, then you can access it later via ssh user@host -p (port whatever) 

6. Add an AllowUsers line at the bottom of the file with a space separating usernames, save file/exit 

AllowUsers  newUserName 

Restart SSH 

root@server:~#   service  ssh  restart  -OR- /etc/init.d/ssh  restart 

7. Configure & restart Fail2Ban 

root@server:~#   nano  /etc/fail2ban/jail.local 

root@server:~#   /etc/init.d/fail2ban  restart  -OR- service  fail2ban  restart 

8. Log out and log back in with newly created account 

root@server:~#   exit 

localbox:~admin$  ssh  newUserName@172.20.241.39  



9. Update system    *****This will likely have to wait, due to time constraints***** 

root@server:~#   apt-get  update  &&  apt-get  upgrade  -y  



Debian (will need to revise once we find out exact version) 

 root:P@ssw0rd and newuser:P@ssw0rd 

1. Change root password:  passwd 
2. Fail2ban: apt-get install fail2ban -y 

           Service fail2ban start 
3. Update (may need to wait if firewall is blocking first 15 min): apt-get update  
4. Lock ssh: vi /etc/ssh/sshd_config 

           PermitRootLogin no 
           PasswordAuthentication no 
            Service ssh restart 

5. Set up IP tables (Sam’s CNIT 129 lab, may want to create separate doc for this) 
 iptables -N TCP 
 iptables -N UDP 
 iptables -P FORWARD DROP 
 iptables -P OUTPUT ACCEPT 
 iptables -P INPUT DROP 
 iptables -A INPUT -m conntrack --ctstate RELATED, ESTABLISHED –j ACCEPT 
 iptables -A INPUT -I lo -j ACCEPT 
 iptables -A INPUT -m conntrack --ctstate INVALID -j DROP 
 iptables -A INPUT pp icmp --icmp-type 8 -m conntrack --ctstate NEW -j ACCEPT 
 iptables -A INPUT -p udp --m contract --ctstate NEW –j UDP 
 iptables -A INPUT -p tcp --syn -m conntrack --ctstate NEW -j TCP 
 iptables -A INPUT -p udp --j REJECT --reject-with icmp-port-unreachable 
 iptables -A INPUT -p tcp --j REJECT –reject-with tcp-reset 
 iptables -A INPUT -j REJECT --reject-with icmp-proto-unreachable 
 iptables -A TCP -p tcp --dport 80 -j ACCEPT 
 iptables -A TCP -p tcp --dport 443 -j ACCEPT 
 iptables -A TCP -p tcp --dport 22 -j ACCEPT 
 iptables -A OUTPUT -p tcp --tcp-flags ALL SYN -m state --state NEW -j DROP 

6. Running services: netstat –tulpn 
7. Remove unnecessary services 

 

 

REFERENCES 

http://firewallingit.blogspot.com/2015/04/ccdc-debian-hardening-guide.html?m= 

 

 

 

 

 
 

  



What steps do you take to secure a Debian server? 

http://serverfault.com/questions/11659/what-steps-do-you-take-to-secure-a-debian-server 

 

● disable root login 

● disable login by password (allow only login by public-key) 

● change SSH port 

● use denyhosts (or similar) 

● write your own iptbles script (so you control exactly what to allow and can drop everything else) 

● force the use of SSL/TLS secured communications and make sure to have valid, non-expired and signed 

certificates 

● turn on strict certificate verification for all external services (for example when authenticating users with an 

LDAP server on another machine) 

 

Obligatory: 

- installation of system with expert mode, only packages that I need 

- hand written firewall with default policy on iptables' input: drop, permitting access to SSH, HTTP or whatever else given 

server is running 

- Fail2Ban for SSH [ and sometimes FTP / HTTP / other - depending on context ] 

- disable root logins, force using normal user and sudo 

- custom kernel [ just old habit ] 

- scheduled system upgrade 

 

Depending on level of paranoia, additionally: 

- drop policy on output except for a couple of allowed destinations / ports 

- integrit for checking if some parts of file system ware not modified [with checksum kept outside of the machine], for 

example Tripwire 

- scheduled scan at least with nmap of system from the outside 

- automated log checking for unknown patterns [but that's mostly to detect hardware malfunction or some minor crashes] 

- scheduled run of chkrootkit 

- immutable attribute for /etc/passwd so adding new users is slightly more difficult 

- /tmp mounted with noexec 

- port knocker or other non-standard way of opening SSH ports [e.g. visiting 'secret' web page on web server allows 

incoming SSH connection for a limited period of time from an IP address that viewed the page. If you get connected, -m 

state --satete ESTABLISHED takes care of allowing packet flow as long as you use a single SSH session] 

 

Things I do not do myself but make sense: 

- grsecurity for kernel 

- remote syslog so logs cannot be overwritten when system gets compromised 

- alerting about any SSH logins 

- configure rkhunter and set it up to run from time to time 
 

http://serverfault.com/questions/11659/what-steps-do-you-take-to-secure-a-debian-server


Disabling root user login:  
http://www.howtogeek.com/howto/linux/security-tip-disable-root-ssh-login-on-linux/ 

https://www.liquidweb.com/kb/disabling-root-user-login/ 

https://wiki.debian.org/sudo#Verifying_sudo_membership      https://wiki.debian.org/sudo 

 

To disable root logins through ssh, edit the file /etc/ssh/sshd_config. Refer to your distribution's documentation in case the 

location of the file is different in your distribution. In this file, change the line that says "PermitRootLogin yes" to 

"PermitRootLogin no". If there is a # at the start of the line, remove it. Now save the file. 

This hole might already be plugged in your specific distribution by default, but it doesn't hurt to check. Once the file has 

been modified and saved, you must restart the ssh daemon to use the new configuration. To do so, type "/etc/init.d/ssdh 
restart" to make it use the new configuration file. 

The /etc/securetty file defines the local terminals (Alt+Shift+<number from 1-6>) on the computer which are considered 

secure and can be allowed to have a root login. Simply having a blank securetty file ensures that all local terminals are 

considered insecure and will not allow anyone to login using the root account. 

echo > /etc/securetty 

This command will overwrite the contents of /etc/securetty with a blank file. Make sure to store a backup of the original file 

if you ever think you might need it. 

 

Since this is an email server, it’ll likely use SMTP/be vulnerable to SMTP-based attacks: 
This article looks at changing the configuration file so that we can monitor the mail.log file and 

take action against suspect connections over smtp (port 25):  

http://www.the-art-of-web.com/system/fail2ban-sendmail/ 

 
http://www.dummies.com/programming/networking/smtp-hacks-and-how-to-guard-against-them/ 

Exim (default Debian, likely to be the MTA): https://wiki.debian.org/Exim 

https://nmap.org/nsedoc/scripts/smtp-vuln-cve2010-4344.html 

Using Postfix for Secure SMTP Gateways:  http://www.linuxjournal.com/article/4241 

https://wiki.debian.org/Postfix 

 

Fail2Ban: 
https://debaday.debian.net/2007/04/29/fail2ban-an-enemy-of-script-kiddies/ 

http://www.the-art-of-web.com/system/fail2ban/ 

http://www.ducea.com/2006/07/03/using-fail2ban-to-block-brute-force-attacks/ 
http://www.the-art-of-web.com/system/fail2ban-sendmail/ 

https://www.unixmen.com/how-to-prevent-ssh-brute-force-attacks-with-fail2ban-on-debian-7/ 

 

 
 

http://www.howtogeek.com/howto/linux/security-tip-disable-root-ssh-login-on-linux/
https://www.liquidweb.com/kb/disabling-root-user-login/
https://wiki.debian.org/sudo#Verifying_sudo_membership
https://wiki.debian.org/sudo
http://www.google.com/search?q=define:smtp
http://www.the-art-of-web.com/system/fail2ban-sendmail/
http://www.dummies.com/programming/networking/smtp-hacks-and-how-to-guard-against-them/
https://wiki.debian.org/Exim
https://nmap.org/nsedoc/scripts/smtp-vuln-cve2010-4344.html
http://www.linuxjournal.com/article/4241
https://wiki.debian.org/Postfix
https://debaday.debian.net/2007/04/29/fail2ban-an-enemy-of-script-kiddies/
http://www.the-art-of-web.com/system/fail2ban/
http://www.ducea.com/2006/07/03/using-fail2ban-to-block-brute-force-attacks/
http://www.the-art-of-web.com/system/fail2ban-sendmail/
https://www.unixmen.com/how-to-prevent-ssh-brute-force-attacks-with-fail2ban-on-debian-7/


Intrusion detection: 
http://serverfault.com/questions/2783/how-do-i-know-if-my-linux-server-has-been-hacked 
http://serverfault.com/questions/650/how-can-i-detect-unwanted-intrusions-on-my-servers/800#800 

 

Debian Goodies: 

1. dglob – Produce a list of package names which match a pattern 

2. dgrep – Search all files in given packages for a regex 

3. dpigs – Display which installed packages taken the most disk space 

4. debget – Obtain a .deb for a package in APT’s database 

5. debmany – Choose manpages of installed or removed packages 

6. checkrestart – Finds and restart processes which are using outdated versions of upgraded files*** 

7. popbugs – Show a customized release-critical bug report based on packages you use 

8. which-pkg-broke – Catch which package might have broken another 

 

 

 

Referenced below: https://www.debian.org/doc/manuals/securing-debian-howto/ch4.en.html 

4.4 Set a LILO or GRUB password 

Anybody can easily get a root-shell and change your passwords by entering 

<name-of-your-bootimage> init=/bin/sh at the boot prompt. After changing 

the passwords and rebooting the system, the person has unlimited 

root-access and can do anything he/she wants to the system. After this 

procedure you will not have root access to your system, as you do not know 

the root password. 

To make sure that this cannot happen, you should set a password for the 

boot loader. You can choose between a global password or a password for a 

certain image. 

For LILO you need to edit the config file /etc/lilo.conf and add a 

password and restricted line as in the example below. 

      image=/boot/2.2.14-vmlinuz 

          label=Linux 

          read-only 

http://serverfault.com/questions/2783/how-do-i-know-if-my-linux-server-has-been-hacked
http://serverfault.com/questions/650/how-can-i-detect-unwanted-intrusions-on-my-servers/800#800
https://www.debian.org/doc/manuals/securing-debian-howto/ch4.en.html


          password=hackme 

          restricted 

 

Then, make sure that the configuration file is not world readable to 

prevent local users from reading the password. When done, rerun lilo. 

Omitting the restricted line causes lilo to always prompt for a password, 

regardless of whether LILO was passed parameters. The default permissions 

for /etc/lilo.conf grant read and write permissions to root, and enable 

read-only access for lilo.conf's group, root. 

 

If you use GRUB instead of LILO, edit /boot/grub/menu.lst and add the 

following two lines at the top (substituting, of course hackme with the 

desired password). This prevents users from editing the boot items.timeout 

3 specifies a 3 second delay before grub boots the default item. 

      timeout 3 

       password hackme 

 

To further harden the integrity of the password, you may store the 

password in an encrypted form. The utility grub-md5-crypt generates a 

hashed password which is compatible with GRUB's encrypted password 

algorithm (MD5). To specify in grub that an MD5 format password will be 

used, use the following directive: 

      timeout 3 

       password --md5 $1$bw0ez$tljnxxKLfMzmnDVaQWgjP0 

The --md5 parameter was added to instruct grub to perform the MD5 

authentication process. The provided password is the MD5 encrypted version 

of hackme. Using the MD5 password method is preferable to choosing its 

clear-text counterpart. More information about grub passwords may be found 

in the grub-doc package. 

4.5 Disable root prompt on the initramfs 



Note: This applies to the default kernels provided for releases after 

Debian 3.1 

Linux 2.6 kernels provide a way to access a root shell while booting which 

will be presented during loading the initramfs on error. This is helpful 

to permit the administrator to enter a rescue shell with root permissions. 

This shell can be used to manually load modules when autodetection fails. 

This behavior is the default for initramfs-tools generated initramfs. The 

following message will appear: 
      "ALERT!  /dev/sda1 does not exist.  Dropping to a shell! 

 

In order to remove this behavior you need to set the following boot 

argument:panic=0. Add this to the variable GRUB_CMDLINE_LINUX in 
/etc/default/grub and issue update-grub or to the append section 

of/etc/lilo.conf. 

4.9 Restricting the use of the Magic SysRq key 
The Magic SysRq key is a key combination that allows users connected to the system console of a Linux kernel 
to perform some low-level commands. These low-level commands are sent by pressing simultaneously 
Alt+SysRq and a command key. The SysRq key in many keyboards is labeled as the Print Screen key. 

Since the Etch release, the Magic SysRq key feature is enabled in the Linux kernel to allow console users 
certain privileges. You can confirm this by checking if the /proc/sys/kernel/sysrq exists and reviewing its value: 

    $ cat /proc/sys/kernel/sysrq  
     438 
 

The default value shown above allows all of the SysRq functions except for the possibility of sending signals to 
processes. For example, it allow users connected to the console to remount all systems read-only, reboot the 
system or cause a kernel panic. In all the features are enabled, or in older kernels (earlier than 2.6.12) the value 
will be just 1. 

You should disable this functionality ifaccess to the console is not restricted to authorised users: the console is 
connected to a modem line, there is easy physical access to the system or it is running in a virtualised 
environment and other users access the console. To do this edit the /etc/sysctl.conf and add the following lines: 

    # Disables the magic SysRq key 
     kernel.sysrq = 0 
 

 

 


