NOTE/DISCLAIMER:

These plans work great for locking it down all the way.
Nothing got in or out, 0% pwnage here...but you need to
actually keep services usable.

This plan/Fail2ban locks everything down, right away.
Best not to get pwned, so deploy it (or a something better),
and use it as an opportunity to get your services back up

safely.

CHECKLIST - FIRST FIFTEEN MINUTES* *consider taking a snapshot first...

Log into Debian box from local machine

localbox:~admin$ ssh root@l172.20.241.39

Debian might not have sudo- install sudo, Snort, and Fail2Ban

root@server:~# apt-get update ; apt-get install sudo snort fail2ban
root@server:~# apt-get --only-upgrade install exim4 -OR-??rmaildaemon
Create a new user, and give that user sudo privileges

root@server:~# adduser newUserName

root@server:~# adduser newUserName sudo -OR- sudo adduser foo sudo
Edit sudoers file; make sure newly created account is present

root@server:~# sudo nano /etc/sudoers

Look for this part of the file, newUserName should match root

User privilege specification

root ALL=(ALL:ALL) ALL

newUserName ALL=(ALL:ALL) ALL

Make sure this line is in place

Allow members of group sudo to execute any command

%sudo ALL=(ALL:ALL) ALL

Be sure to remove this line, in order to use sudo and be prompted for a password
NOPASSWD:ALL

Secure Root, Lock SSL Root Access, Change SSH Port, and Restart SSH

root@server:~# sudo passwd -1 root

root@server:~# nano /etc/ssh/sshd config

Uncomment these lines

#PermitRootLogin no

#22 (change the port, to one you'll remember, then you can access it later via ssh user@host -p (port whatever)
Add an AllowUsers line at the bottom of the file with a space separating usernames, save file/exit
AllowUsers newUserName

Restart SSH

root@server:~# service ssh restart -OR- /etc/init.d/ssh restart
Configure & restart Fail2Ban

root@server:~# nano /etc/fail2ban/jail.local

root@server:~# /etc/init.d/fail2ban restart -OR- service fail2ban restart
Log out and log back in with newly created account

root@server:~# exit

localbox:~admin$ ssh newUserName@1l72.20.241.39

9. Update system *****This will likely have to wait, due to time constraints*****

root@server:~# apt-get update && apt-get upgrade -y

Debian (will need to revise once we find out exact version)
root:P@sswOrd and newuser:P@sswOrd

1. Change root password: passwd
2. Fail2ban: apt-get install fail2ban -y
Service fail2ban start
3. Update (may need to wait if firewall is blocking first 15 min): apt-get update
4. Lock ssh: vi /etc/ssh/sshd_config
PermitRootLogin no
Password Authentication no
Service ssh restart
5. Setup IP tables (Sam’s CNIT 129 lab, may want to create separate doc for this)
iptables -N TCP
iptables -N UDP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
iptables -P INPUT DROP
iptables -A INPUT -m conntrack --ctstate RELATED, ESTABLISHED —j ACCEPT
iptables -A INPUT -I lo -j ACCEPT
iptables -A INPUT -m conntrack --ctstate INVALID -j DROP
iptables -A INPUT pp icmp --icmp-type 8 -m conntrack --ctstate NEW -j ACCEPT
iptables -A INPUT -p udp --m contract --ctstate NEW —j UDP
iptables -A INPUT -p tcp --syn -m conntrack --ctstate NEW -j TCP
iptables -A INPUT -p udp --j REJECT --reject-with icmp-port-unreachable
iptables -A INPUT -p tcp --j REJECT —reject-with tcp-reset
iptables -A INPUT -j REJECT --reject-with icmp-proto-unreachable
iptables -A TCP -p tcp --dport 80 -j ACCEPT
iptables -A TCP -p tcp --dport 443 -j ACCEPT
iptables -A TCP -p tcp --dport 22 -j ACCEPT
iptables -A OUTPUT -p tcp --tcp-flags ALL SYN -m state --state NEW -j DROP
6. Running services: netstat —tulpn
7. Remove unnecessary services

REFERENCES

http://firewallingit.blogspot.com/2015/04/ccdc-debian-hardening-guide.html?m=

What steps do you take to secure a Debian server?

http://serverfault.com/questions/11659/what-steps-do-you-take-to-secure-a-debian-server

e disable root login

e disable login by password (allow only login by public-key)

e change SSH port

e use denyhosts (or similar)

e write your own iptbles script (so you control exactly what to allow and can drop everything else)

e force the use of SSL/TLS secured communications and make sure to have valid, non-expired and signed
certificates

e turn on strict certificate verification for all external services (for example when authenticating users with an

LDAP server on another machine)

Obligatory:
- installation of system with expert mode, only packages that | need

- hand written firewall with default policy on iptables' input: drop, permitting access to SSH, HTTP or whatever else given
server is running

- Fail2Ban for SSH [and sometimes FTP / HTTP / other - depending on context]

- disable root logins, force using normal user and sudo

- custom kernel [just old habit]

- scheduled system upgrade

Depending on level of paranoia, additionally:

- drop policy on output except for a couple of allowed destinations / ports

- integrit for checking if some parts of file system ware not modified [with checksum kept outside of the machine], for
example Tripwire

- scheduled scan at least with nmap of system from the outside

- automated log checking for unknown patterns [but that's mostly to detect hardware malfunction or some minor crashes]
- scheduled run of chkrootkit

- immutable attribute for /etc/passwd so adding new users is slightly more difficult

- /tmp mounted with noexec

- port knocker or other non-standard way of opening SSH ports [e.g. visiting 'secret' web page on web server allows
incoming SSH connection for a limited period of time from an IP address that viewed the page. If you get connected, -m

state --satete ESTABLISHED takes care of allowing packet flow as long as you use a single SSH session]

Things | do not do myself but make sense:

- grsecurity for kernel
- remote syslog so logs cannot be overwritten when system gets compromised
- alerting about any SSH logins

- configure rkhunter and set it up to run from time to time

http://serverfault.com/questions/11659/what-steps-do-you-take-to-secure-a-debian-server

Disabling root user login:

http://www.howtogeek.com/howto/linux/security-tip-disable-root-ssh-login-on-linux/

https://www.liquidweb.com/kb/disabling-root-user-login/

https://wiki.debian.org/sudo#Verifying _sudo _membership https://wiki.debian.org/sudo

To disable root logins through ssh, edit the file /etc/ssh/sshd_config. Refer to your distribution's documentation in case the
location of the file is different in your distribution. In this file, change the line that says "PermitRootLogin yes" to

"PermitRootLogin no". If there is a # at the start of the line, remove it. Now save the file.

This hole might already be plugged in your specific distribution by default, but it doesn't hurt to check. Once the file has
been modified and saved, you must restart the ssh daemon to use the new configuration. To do so, type "/etc/init.d/ssdh

restart' to make it use the new configuration file.

The /etc/securetty file defines the local terminals (Alt+Shift+<number from 1-6>) on the computer which are considered
secure and can be allowed to have a root login. Simply having a blank securetty file ensures that all local terminals are

considered insecure and will not allow anyone to login using the root account.
echo > /etc/securetty

This command will overwrite the contents of /etc/securetty with a blank file. Make sure to store a backup of the original file

if you ever think you might need it.

Since this is an email server, it’ll likely use SMTP/be vulnerable to SMTP-based attacks:

This article looks at changing the configuration file so that we can monitor the mail.log file and
take action against suspect connections over smtp (port 25):
http://www.the-art-of-web.com/system/fail2ban-sendmail/

http://www.dummies.com/programming/networking/smtp-hacks-and-how-to-guard-against-them/
Exim (default Debian, likely to be the MTA): https://wiki.debian.org/Exim
https://nmap.org/nsedoc/scripts/smtp-vuln-cve2010-4344 .html

Using Postfix for Secure SMTP Gateways: http://www.linuxjournal.com/article/4241

https://wiki.debian.org/Postfix

Fail2Ban:
https://debaday.debian.net/2007/04/29/fail2ban-an-enemy-of-script-kiddies/

http://www.the-art-of-web.com/system/fail2ban/

http://www.ducea.com/2006/07/03/using-fail2ban-to-block-brute-force-attacks/

http://www.the-art-of-web.com/system/fail2ban-sendmail/

https://www.unixmen.com/how-to-prevent-ssh-brute-force-attacks-with-fail2ban-on-debian-7/

http://www.howtogeek.com/howto/linux/security-tip-disable-root-ssh-login-on-linux/
https://www.liquidweb.com/kb/disabling-root-user-login/
https://wiki.debian.org/sudo#Verifying_sudo_membership
https://wiki.debian.org/sudo
http://www.google.com/search?q=define:smtp
http://www.the-art-of-web.com/system/fail2ban-sendmail/
http://www.dummies.com/programming/networking/smtp-hacks-and-how-to-guard-against-them/
https://wiki.debian.org/Exim
https://nmap.org/nsedoc/scripts/smtp-vuln-cve2010-4344.html
http://www.linuxjournal.com/article/4241
https://wiki.debian.org/Postfix
https://debaday.debian.net/2007/04/29/fail2ban-an-enemy-of-script-kiddies/
http://www.the-art-of-web.com/system/fail2ban/
http://www.ducea.com/2006/07/03/using-fail2ban-to-block-brute-force-attacks/
http://www.the-art-of-web.com/system/fail2ban-sendmail/
https://www.unixmen.com/how-to-prevent-ssh-brute-force-attacks-with-fail2ban-on-debian-7/

Intrusion detection:

http://serverfault.com/questions/2783/how-do-i-know-if-my-linux-server-has-been-hacked

http://serverfault.com/questions/650/how-can-i-detect-unwanted-intrusions-on-my-servers/800#800

Debian Goodies:
1. dglob — Produce a list of package names which match a pattern
dgrep — Search all files in given packages for a regex
dpigs — Display which installed packages taken the most disk space
debget — Obtain a .deb for a package in APT’s database
debmany — Choose manpages of installed or removed packages
checkrestart — Finds and restart processes which are using outdated versions of upgraded files***

popbugs — Show a customized release-critical bug report based on packages you use

© N o gk~ w D

which-pkg-broke — Catch which package might have broken another

Referenced below: https://www.debian.org/doc/manuals/securing-debian-howto/ch4.en.html

4.4 Set a LILO or GRUB password

Anybody can easily get a root-shell and change your passwords by entering
<name-of-your-bootimage> init=/bin/sh at the boot prompt. After changing
the passwords and rebooting the system, the person has unlimited
root—-access and can do anything he/she wants to the system. After this
procedure you will not have root access to your system, as you do not know

the root password.

To make sure that this cannot happen, you should set a password for the
boot loader. You can choose between a global password or a password for a

certain image.

For LILO you need to edit the config file /etc/lilo.conf and add a
password and restricted line as in the example below.
image=/boot/2.2.14-vmlinuz

label=Linux

read-only

http://serverfault.com/questions/2783/how-do-i-know-if-my-linux-server-has-been-hacked
http://serverfault.com/questions/650/how-can-i-detect-unwanted-intrusions-on-my-servers/800#800
https://www.debian.org/doc/manuals/securing-debian-howto/ch4.en.html

password=hackme

restricted

Then, make sure that the configuration file is not world readable to
prevent local users from reading the password. When done, rerun lilo.
Omitting the restricted line causes lilo to always prompt for a password,
regardless of whether LILO was passed parameters. The default permissions
for /etc/lilo.conf grant read and write permissions to root, and enable

read-only access for lilo.conf's group, root.

If you use GRUB instead of LILO, edit /boot/grub/menu.lst and add the
following two lines at the top (substituting, of course hackme with the
desired password). This prevents users from editing the boot items.timeout

3 specifies a 3 second delay before grub boots the default item.

timeout 3

password hackme

To further harden the integrity of the password, you may store the
password in an encrypted form. The utility grub-md5-crypt generates a
hashed password which is compatible with GRUB's encrypted password
algorithm (MD5). To specify in grub that an MD5 format password will be
used, use the following directive:

timeout 3

password --md5 1bwlez$tljnxxKLEfMzmnDVaQWgjPO

The --md5 parameter was added to instruct grub to perform the MD5
authentication process. The provided password is the MD5 encrypted version
of hackme. Using the MD5 password method is preferable to choosing its
clear-text counterpart. More information about grub passwords may be found

in the grub-doc package.

4.5 Disable root prompt on the initramfs

Note: This applies to the default kernels provided for releases after
Debian 3.1

Linux 2.6 kernels provide a way to access a root shell while booting which
will be presented during loading the initramfs on error. This is helpful
to permit the administrator to enter a rescue shell with root permissions.
This shell can be used to manually load modules when autodetection fails.
This behavior is the default for initramfs-tools generated initramfs. The

following message will appear:

"ALERT! /dev/sdal does not exist. Dropping to a shell!

In order to remove this behavior you need to set the following boot
argument:panic=0. Add this to the variable GRUB CMDLINE LINUX in
/etc/default/grub and issue update-grub or to the append section
of/etc/lilo.conf.

4.9 Restricting the use of the Magic SysRq key

The Magic SysRq key is a key combination that allows users connected to the system console of a Linux kernel
to perform some low-level commands. These low-level commands are sent by pressing simultaneously
Alt+SysRq and a command key. The SysRq key in many keyboards is labeled as the Print Screen key.

Since the Etch release, the Magic SysRq key feature is enabled in the Linux kernel to allow console users
certain privileges. You can confirm this by checking if the /proc/sys/kernel/sysrq exists and reviewing its value:

$ cat /proc/sys/kernel/sysrq
438

The default value shown above allows all of the SysRq functions except for the possibility of sending signals to
processes. For example, it allow users connected to the console to remount all systems read-only, reboot the
system or cause a kernel panic. In all the features are enabled, or in older kernels (earlier than 2.6.12) the value
will be just 1.

You should disable this functionality ifaccess to the console is not restricted to authorised users: the console is
connected to a modem line, there is easy physical access to the system or it is running in a virtualised
environment and other users access the console. To do this edit the /etc/sysctl.conf and add the following lines:

Disables the magic SysRq key
kernel.sysrq = 0

