
CNIT 127: Exploit Development  
Ch 8: Windows Overflows  

Part 2

Updated 
10-27-18



Topics
• Stack Protection 
• Heap-Based Buffer Overflows 
• Other Overflows



Stack Protector in gcc



An Early Linux Project



Compile in Two Ways

• Compile without and with a stack 
protector 

• Two slightly different executable sizes



Disassemble test_pw

• Added code in prologue 
• Copies a value from %gs:0x14 to the 

bottom of the stack frame



Disassemble test_pw

• Added code in epilogue 
• Won't ret if cookie check fails



Stack Protector in Windows



Use Visual Studio and C++



Compile in Two Ways

• Compile 
without 
and with a 
stack 
protector 

• Two slightly 
different 
executable 
sizes



Disassemble with IDA Free

• See security_cookie code



Stack Protection



Windows Stack Protections

• Microsoft Visual C++ .NET provides 
– /GS compiler flag is on by default 

– Tells compiler to place security cookies on 
the stack to guard the saved return address 

– Equivalent of a canary 

– 4-byte value (dword) placed on the stack after 
a procedure call 

– Checked before procedure return 

– Protects saved return address and EBP





How is the Cookie Generated?

• When a process starts, Windows combines 
these values with XOR 
– DateTime (a 64-bit integer counting time 

intervals of 100 nanoseconds) 
– Process ID 
– Thread ID 
– TickCount (number of milliseconds since the 

system started up) 
– Performance Counter (number of CPU cycles)



Predicting the Cookie

• If an attacker can run a process on the 
target to get system time values 

• Some bits of the cookie can be predicted



Effectively 17 bits of Randomness



How Good is 17 Bits?

• 2^17 = 131,072 
• So an attacker would have to run an 

attack 100,000 times or so to win by 
guessing the cookie



Prologue Modification

• __security_cookie value placed in the 
stack at a carefully calculated position 

• To protect the EBP and Return value 
– From link Ch 8m



Epilogue Modification

• Epilogue to a function now includes these 
instructions 
– From link Ch 8m



__security_check_cookie

• Current cookie value is in ecx 
• Compared to authoritative value stored in 

the .data section of the image file of the 
procedure 

• If the check fails, it calls a security handler, 
using a pointer stored in the .data section



Parameter Order

• Before the /GS flag (added in Windows 
Server 2003), local variables were placed 
on the stack in the order of their 
declaration in the C++ source code 

• Now all arrays are moved to the bottom of 
the list, closest to the saved return address 

• This prevents buffer overflows in the 
arrays from changing the non-array 
variables





Overwriting Parameters



Overwriting Parameters

• We've changed the cookie, but if the 
parameters are used in a write operation 
before the function returns, we could 
– Overwrite the authoritative cookie value in 

the .data section, so the cookie check passes 

– Overwrite the handler pointer to the security 
handler, and let the cookie check fail 
• Handler could point to injected code 

• Or set handler to zero and overwrite the default 
exception handler value



Heap-Based Buffer Overflows



Purpose of the Heap

• Consider a Web server 
• HTTP requests vary in length 
• May vary from 20 to 20,000 bytes or 

longer (in principle) 
• Once processed, the request can be 

discarded, freeing memory for re-use 
• For efficiency, such data is best stored on 

the heap



The Process Heap

• Every process running on Win32 has a 
process heap 

• The C function GetProcessHeap() returns a 
handle to the process heap 

• A pointer to the process heap is also 
stored in the Process Environment Block



The Process Heap

• This code returns that pointer in eax 

• Many of the underlying functions of the 
Windows API use this default process heap



Dynamic Heaps

• A process can create as many dynamic 
heaps as required 

• All inside the default process heap 
• Created with the HeapCreate() function



• From link Ch 8o



Working with the Heap

• Application uses HeapAllocate() to borrow 
a chunk of memory on the heap 

– Legacy functions left from Win16 are 
LocalAlloc() & GlobalAlloc(), but they do the 
same thing—there's no difference in Win32 

• When the application is done with the 
memory, if calls HeapFree() 

– Or LocalFree() or GlobalFree()



How the Heap Works

• The stack grows downwards, towards 
address 0x00000000 

• The heap grows upwards 
• Heap starts with 128 LIST_ENTRY 

structures that keep track of free blocks



Vulnerable Heap Operations

• When a chunk is freed, forward and 
backward pointers must be updated 

• This enables us to control a write 
operation, to write to arbitrary RAM 
locations 
– Image from mathyvanhoef.com, link Ch 5b



Details

• There is a lot more to it, involving these 
structures 
– Segment list 
– Virtual Allocation list 
– Free list 
– Lookaside list 

• For details, see link Ch8o



Exploiting Heap-Based Overflows:  
Three Techniques

• Overwrite the pointer to the exception 
handler 

• Overwrite the pointer to the Unhandled 
Exception Filter 

• Overwrite a pointer in the PEB



Overwrite a Pointer in the PEB

• RtlEnterCriticalSection, called by 
RtlAcquirePebLock() and RtlReleasePebLock() 

• Called whenever a process exits with 
ExitProcess() 

• PEB location is fixed for all versions of Win 
NT 

• Your code should restore this pointer, and 
you may also need to repair the heap



Win 2003 Server

• Does not use these pointers in the PEB 
• But there are Ldr* functions that call 

pointers we can control 
– Including LdrUnloadDll()



Vectored Exception Handling

• Introduced with Windows XP 
• Traditional frame-based exception 

handling stores exception registration 
records on the stack 

• Vectored exception handling stores 
information about handlers on the heap 

• A heap overflow can change them



Overwrite a Pointer to the Unhandled 
Exception Filter

• First proposed by Halvar Flake at Blackhat 
Amsterdam (2001) 

• An application can set this value using 
SetUnhandledExceptionFilter() 
– Disassemble that function to find the pointer



Repairing the Heap

• The overflow corrupts the heap 
• Shellcode will probably cause an access 

violation 
• Simplest repair process is to just make the 

heap look like a fresh, empty heap 
–With the one block we are using on it



Restore the Exception Handler you 
Abused

• Otherwise, you could create an endless 
loop 

• If your shellcode causes an exception



COM Objects and the Heap

• Component Object Model (COM) Objects 
– An object that can be created when needed 

by another program 
– It has methods that can be called to perform 

a task 
– It also has attributes (stored data) 

• COM objects are created on the heap



Vtable in Heap

• All COM classes 
have one or more 
interfaces, which 
are used to connect 
them to a program 
– Figure from link Ch 

8p



COM Objects Contain Data

• If the programmer doesn't check, these 
data fields could be overflowed, into the 
next object's vtable 
– Image from link Ch 8q



• Vunerable COM objects are often not fixed 
• Just added to the "killbit" list 
• Which can be circumvented 
• From link Ch 8qq; Image on next slide from link 

Ch 8r





Other Overflows



Overflows in the .data Section 

• If a buffer is placed before function pointers in 
the .data section 

• Overflowing the buffer can change the pointers



TEB/PEB Overflows

• In principle, buffers in the TEB used for 
converting ASCII to Unicode could be 
overflowed 
• Changing pointers 

• There are no public examples of this type 
of exploit




