Ch 8: Debugging

Disassemblers v. Debuggers

A disassembler like IDA Pro shows the state of the program just before execution begins

Debuggers show

· Every memory location

· Register

· Argument to every function

At any point during processing

· And let you change them

Two Debuggers

Ollydbg

· Most popular for malware analysis

· User-mode debugging only

· IDA Pro has a built-in debugger, but it's not as easy to use or powerful as Ollydbg

Windbg

· Supports kernel-mode debugging

Source-Level v. Assembly-Level Debuggers

Source-level debugger

· Usually built into development platform

· Can set breakpoints (which stop at lines of code)

· Can step through program one line at a time

Assembly-level debuggers (low-level)

· Operate on assembly code rather than source code

· Malware analysts are usually forced to use them, because they don't have source code

Kernel v. User-Mode Debugging

[image: image1.png]Advanced Boot Opt S

Choose Advanced Options for: Microsoft wWindows 7
(Use the arrow keys to highlight your choice.)

Repair Your Computer

safe Mode
safe Mode with Networking
safe Mode with Command Prompt

Enable Boot Logging

Enable low-resolution video (640x480)

Last Known Good Configuration (advanced)
Directory Services Restore Mode

Debugging Mode

Disable automatic restart on system failure
Disable Driver Signature Enforcement

start windows Normally

Description: View a list of system recovery tools y
startup problems, run diagnostics, or

ENTER=Choose

User Mode Debugging

Debugger runs on the same system as the code being analyzed

Debugging a single executable

Separated from other executables by the OS

Kernel Mode Debugging

Requires two computers, because there is only one kernel per computer

If the kernel is at a breakpoint, the system stops

One computer runs the code being debugged

Other computer runs the debugger

OS must be configured to allow kernel debugging

Two machines must be connected

Windows 7 Advanced Boot Options
Press F8 during startup

"Debugging Mode"

Good Intro to OllyDbg

Link Ch 8a

Using a Debugger

[image: image2.png]Example 9-1. Stepping through code

mov edi, DWORD_00406904
mov ecx, 0x0d
LOC_040106B2

xor [edi], exoC

i edi

Toopw LOC_04010682

DWORD:08406904: FBFDF3DOR

Two Ways

Start the program with the debugger

· It stops running immediately prior to the execution of its entry point

Attach a debugger to a program that is already running

· All its threads are paused

· Useful to debug a process that is affected by malware

Single-Stepping

Simple, but slow

[image: image3.png]Example 9-2. Single-stepping through a section of code to see how it
changes memory

DOF3FDF8 DOFSFEEE FDEEESDD 9C (.
4CF3FDF8 DOFSFEEE FDEEESDD 9C (L.
4C6FFDF8 DOFSFEEE FDEEESDD 9C (Lo
4C6F61F8 DOFSFEEE FDEEESDD 9C (Loa.
L. SNIP . L.

4C6F6164 4C696272 61727941 00 (LoadLibraryA.)

Don't get bogged down in details

Example

This code decodes the string with XOR
Stepping-over v. Stepping-Into

Single step executes one instruction

Step-over call instructions

· Bypasses the call

· Decreases the amount of code you need to analyze

· Might miss important functionality, especially if the function never returns

Step-into a call

· Moves into the function and stops at its first command

Pausing Execution with Breakpoints

A program that is paused at a breakpoint is called broken

Example

· You can't tell where this call is going

· Set a breakpoint at the call and see what's in eax
[image: image4.png]Example 9-3. Call to EAX

00401008 mov ecx, [ebp+arg_0]
00401008 mov eax, [edx]
0040100D call eax

[image: image5.png]Example 9-4. Using a debugger (o determine a filename

00401008
00401000
00401014
00401016
0040101
00401020
00401024
00401027
00401024
0040102C
00401032
00401034
00401036
00401038
0040103A
00401040
00401042
00401044
00401047
0040104
00401050
00401051

xor
nov
nov
nov
add
nov
add
test
jnz
nov
push
push
push
nov
nov
push
push
nov
nov
push
push
nov

00401055 Hcall

eax, esp
[esp+eDehsvar_4], eax

eax, edx
[esp+eDehsNunber0fByteshritten], 0
eax, OFFFFFFFEh

ox, [eaxs2]

eax, 2

o, ox

short loc_401020

ecx, dword ptr ds:a_txt ; ".txt"

o 5 hTemplateFile

o 5 dwFlagsAndAttributes
2 5 dwCreationDisposition
[eax], ecx

ecx, dword ptr ds:a_txt+4

o 5 IpSecurityAttributes
[5 dwsharetode

[eax+4], ecx

cx, word ptr ds:a_txt+8

o ; dubestiredaccess

edx 5 IpFileNane

[eax+8], cx

CreateFilen ; CreateFileW(x,x,x,X,X,X,X)

This code calculates a filename and then creates the file
Set a breakpoint at CreateFileW and look at the stack to see the filename

[image: image6.png]oti-Giotizts

Figure 9-1. Using a breakpoint to see the parameters to a function call.
We set a breakpoint on CreateFilekl and then examine the first
parameter of the stack.

WinDbg

[image: image7.png]Example 9-5. Using a breakpoint to view data before the program
encrypts it

00401008
004010D6
004010DB
004010DD
004010E4
004010E7
004010EC
004010EF
004010F4
004010FA
004010FC
00401101
00401105
00401106
00401107

sub
nov
xor
nov
lea
call
lea

Beall
nov
push
push
lea
push
push
call

esp, 0CCh

eax, dword_403000
eax, esp
[esp+0CChsvar_a], eax
eax, [esp+0CCh+buf]

GetData

eax, [esp+0CChsbuf]
EncryptData

ecx, s

0 ; flags
0csh 5 len
eax, [esp+0Dahsbuf]
eax 5 buf
ecx s
ds:send

Encrypted Data

Suppose malware sends encrypted network data

Set a breakpoint before the data is encrypted and view it
[image: image8.png]Tt e ey e =
COETT yjmg) BOBHCDOACOOE0E [
> GRD PTR DS:[_security_cookie!
5 488 EAX

: a«mzn caooo KOV BAGRD°BTR ss:rESPece, EAX

EAX.DWORD PTR S: (£GP
CALL “SiapleSe. GefDat
LER"EAX, DHORD BRS¢

Flaos
© €8 Caoonao0 PUSH BcB Datasi
804424 08 LER EAX.DHORD PTR SS:[ESP+8]
185 59 BUSH EAK' Data
106 @ 81 PUSH ECX Socket .

B6=STmp1e5e Encrypilata

OllyDbg
Types of Breakpoints

Software execution

Hardware execution

Conditional

Software Execution Breakpoints

The default option for most debuggers

Debugger overwrites the first byte of the instruction with 0xCC

· The instruction for INT 3

· An interrupt designed for use with debuggers

· When the breakpoint is executed, the OS generates an exception and transfers control to the debuggersx

Memory Contents at a Breakpoint

There's a breakpoint at the push instruction

Debugger says it's 0x55, but it's really 0xCC

[image: image9.png]Table 9-1. Disassembly and Memory Dump of a Function with a Breakpoint Set

Disassembly view Memory dump
00401130 55 ebp 00401130 Hcc 88 EC 83
00401131 B8 EC ebp, esp 00401134 E4 FB B1 EC
00401133 3 E4 F8 and csp, OFFFFFFFEh D0J0L138 A4 03 0O 00
00401136 B1 EC A4 03 00 00 sub esp, 3Adh 0040113C AL 00 30 40

0040113C A1 00 30 40 80 mov e, dword 403000 00401140 00

When Software Execution Breakpoints Fail

If the 0xCC byte is changed during code execution, the breakpoint won't occur

If other code reads the memory containing the breakpoint, it will read 0xCC instead of the original byte

Code that verifies integrity will notice the discrepancy

Hardware Execution Breakpoints

Uses four hardware Debug Registers

· DR0 through DR3 – addresses of breakpoints

· DR7 stores control information

The address to stop at is in a register

Can break on access or execution

· Can set to break on read, write, or both

No change in code bytes

Running code can change the DR registers, to interfere with debuggers

General Detect flag in DR7

· Causes a breakpoint prior to any mov instruction that would change the contents of a Debug Register

· Does not detect other instructions, however

Conditional Breakpoints

Breaks only if a condition is true

· Ex: Set a breakpoint on the GetProcAddress function

· Only if parameter being passed in is RegSetValue

Implemented as software breakpoints

· The debugger always receives the break

· If the condition is not met, it resumes execution without alerting the user

Conditional breakpoints take much longer than ordinary instructions

A conditional breakpoint on a frequently-accessed instruction can slow a program down

Sometimes so much that it never finishes

Exceptions

Used by debuggers to gain control of a running program

Breakpoints generate exceptions

Exceptions are also caused by

· Invalid memory access

· Division by zero

· Other conditions

First- and Second-Chance Exceptions

When a exception occurs while a debugger is attached

· The program stops executing

· The debugger is given first chance at control

· Debugger can either handle the exception, or pass it on to the program

· If it's passed on, the program's exception handler takes it

Second Chance

If the application doesn't handle the exception

The debugger is given a second chance to handle it

· This means the program would have crashed if the debugger were not attached

In malware analysis, first-chance exceptions can usually be ignored

Second-chance exceptions cannot be ignored

· They usually mean that the malware doesn't like the environment in which it is running

Common Exceptions

INT 3 (Software breakpoint)

Single-stepping in a debugger is implemented as an exception

· If the trap flag in the flags register is set,

· The processor executes one instruction and then generates an exception

Memory-access violation exception

· Code tries to access a location that it cannot access, either because the address is invalid or because of access-control protections

Violating Privilege Rules

· Attempt to execute privileged instruction with outside privileged mode

· In other words, attempt to execute a kernel mode instruction in user mode

· Or, attempt to execute Ring 0 instruction from Ring 3

List of Exceptions
Link Ch 8b
[image: image10.png]The following chart lists the exceptions that can be generated by the Intel 80286, 80386, 80486, and Pentium processors:

Exception | Description
(dec/hex) |
__________ [|ommssssssssssssssssssssssssssssssssssssssseasssss
@ @eh | Divide error:
| Occurs during a DIV or an IDIV instruction when the
| divisor is zero or a quotient overflow occurs
1 e1h Single-step/debug exception:

|
| Occurs for any of a number of conditions
| - Instruction address breakpoint fault
| - Data address breakpoint trap
| - General detect fault

| - Single-step trap

| - Task-switch breakpoint trap

2 @2h | Nonmaskable interrupt:

| Occurs because of a nonmaskable hardware interrupt.
3 @3h Breakpoint:
Occurs when the processor encounters an INT 3 instruction.

Modifying Execution with a Debugger

Skipping a Function

You can change control flags, the instruction pointer, or the code itself

You could avoid a function call by setting a breakpoint where at the call, and then changing the instruction pointer to the instruction after it

· This may cause the program to crash or malfunction, or course

Testing a Function

You could run a function directly, without waiting for the main code to use it

· You will have to set the parameters

· This destroys a program's stack

· The program won't run properly when the function completes

Modifying Program Execution in Practice

Real Virus

Operation depends on language setting of a computer

· Simplified Chinese

Uninstalls itself & does no harm

· English

Display pop-up "Your luck's no good"

· Japanese or Indonesian

Overwrite the hard drive with random data

Break at 1; Change Return Value

[image: image11.png]Example 9-6. Assembly for differentiating between language

settings

00411349
0041134F
00411352
00411359
00411358
00411360
00411367
00411369
00411370
00411372
00411377
0041137E
00411380

call
Anov
cnp
jnz
call
cnp
jz
cnp
jnz
call
cnp
jnz
call

GetSystemDefaultLCID

[ebp+var_4], eax

[ebp+var_4], 409h 409 = English
short loc_411360

sub_411037

[ebp+var_4], 411h 411 = Japanese
short loc_411372

[ebp+var_4], 421h 421 = Indonesian
short loc_411377

sub_41100F

[ebp+var_4], 0C04h C04 = Chinese
short loc_411385

sub_41100A

Last modified 10-4-13
CNIT 126 – Bowne
Page 7 of 7
Fall 2013

