
Machine Learning
Security

13 Loading and
Preprocessing Data with
Tensorflow

Made Dec 8, 2023

• The tf.data API

• The TFRecord Format

• Keras Preprocessing Layers

• The TensorFlow Datasets Project

Topics

The tf.data API

• We used them in project ML 104 to import and preprocess the
California housing data

• We used Pandas to read a CSV file of data

Pandas and Scikit-Learn

• We used Scikit-Learn to split the data into training and test sets

Scikit-Learn

• A more powerful library for loading and preprocessing datasets

• Can handle large datasets efficiently

• Can read from multiple files in parallel

• With multithreading, queuing, shuffling, batching samples, and
more

• Can load and process the next batch of data across multiple
CPU cores

• While the GPUs or TPUs are busy training the current batch of
data

• Can handle datasets that don't fit in memory

tf.data

• A flexible and efficient binary format

• Supports records of varying sizes

• tf.data API supports reading from SQL databases

• And has many extensions

• Including reading from Google's BigQuery service

TFRecord

• A sequence of data items

• Here, just numbers 0-9

tf.data.Dataset import tensorflow as tf

X = tf.range(10) # any data tensor

dataset = tf.data.Dataset.from_tensor_slices(X)

dataset

for item in dataset:

 print(item)

Tuple/Dictionary Structure
X_nested = {"a": ([1, 2, 3], [4, 5, 6]), "b": [7, 8, 9]}

dataset = tf.data.Dataset.from_tensor_slices(X_nested)

for item in dataset:

 print(item)

• Repeat() repeats the input data

• Batch() picks out a batch of instances

• 3x10 makes 4 batches of 7 and 2 left over

Repeat and  
Batch

dataset = tf.data.Dataset.from_tensor_slices(tf.range(10))

dataset = dataset.repeat(3).batch(7)

for item in dataset:

 print(item)

Chaining Dataset Transformations

• Do computations on the data

• For preprocessing

• This example doubles the data values

Map
dataset = dataset.map(lambda x: x * 2) # x is a batch
for item in dataset:

 print(item)

• Keeps only batches that satisfy the condition

• Total > 50

Filter
dataset = dataset.filter(lambda x: tf.reduce_sum(x) > 50)

for item in dataset:

 print(item)

• Pulls a few items from a dataset

Take
for item in dataset.take(2):

 print(item)

• Randomly mixes the instances

• Specify the seed to always see the same random choices

Shuffle
dataset = tf.data.Dataset.range(10).repeat(2)

dataset = dataset.shuffle(buffer_size=4, seed=42).batch(7)

for item in dataset:

 print(item)

• Reads multiple files and interleaves the instances to form a new
dataset

Interleave

• Normalizes data using the mean and std deviation

Preprocessing the Data

Putting Everything Together

Loading and Preprocessing Data
from Multiple CSV Files

Prefetching
• Loads the

next batch
while the
current batch
is training

• Keeps CPU
and GPU (or
TPU) running
at the same
time

• Improves
performance

• Read the CSV files in

• Train a model

• Evaluate and predict

Using the Dataset with Keras

• This function can speed up training

• If you compile() it with steps_per_execution > 1, such as 50

• That will process multiple batches at once

Custom Training Function

The TFRecord Format

• TensorFlow’s preferred format for storing large amounts of data

• And reading it efficiently

• A simple binary format

• A sequence of binary records of varying sizes

• Each record contains

• Length, CRC checksum

• Data, CRC checksum

The TFRecord Format

• Creating a file

• Reading a file

• Can read 
many files 
in parallel

• Output

Creating a TFRecord File

• Helpful if your file is being loaded over a network

• Use the options argument

• Creating the file

• Reading the file

Compress TFRecord Files

• TFRecord files usually contain serialized protocol buffers

• Developed by Google in 2001

• Protobuf definition

• In a .proto file

• 1, 2, ,and 3 are field identifiers

• Compile with protoc compiler

• But the commonly used ones are already defined and compiled
into TensorFlow

Protocol Buffers (protobufs)

• Creating a 
message

• Read & modify 
a field

• Serialize a record

Using a Protobuf Class

• The main protobuf used in a TFRecord file is Example

• Represents one instance in a dataset

• An Example contains a list of named Features

• A Feature is a list containing one of:

• Byte strings

• Floats, or

• Integers

TensorFlow Protobufs

• packed=true encodes numerical data more efficiently

Message Protobuf

• Contains a Person

• Serialize and write to a TFRecord file

• Five copies of the same Person

Creating an Example

Loading and Parsing Examples

Ch 12a

Keras Preprocessing Layers

• Normalizing numerical features

• Encoding categorical features and text

• Cropping and resizing images

• etc.

• Could be done with original data files with Python

• Or on the fly while loading it with tf.data

• Or with preprocessing layers inside your model

Preparing Data

• Advantage: no need to manually preprocess production data
after training

Including Preprocessing Layers in a
Model

• Preprocessing the data just once before training using
preprocessing layers,

• then deploying these layers inside the final model

• Transforms a numerical feature into a categorical feature

• By mapping value ranges (called bins) to categories

• Useful for features with multimodal distributions

• Or with highly nonlinear relationship to the target

Discretization Layer

• This code maps age into three bins

• Less than 18

• 18-50

• 50 or more

Discretization Example

• Category identifiers should not be passed directly to a neural
network

• Because their values cannot be meaningfully compared

• They should be encoded, using one-hot encoding or some other
such system

CategoryEncoding Layer

• More than one categorical feature

• Both using the same categories

Multi-Hot Encoding

• By default, encodes strings as integers

• Unknown categories are mapped to 0

• Can also do one-hot encoding

StringLookup Layer

• Computes a hash, modulo the number of bins

• Pseudorandom but stable across runs and platforms

• The same category will always be mapped to the same integer

• (As long as the number of bins is unchanged)

• There are hash collisions (e.g. 'Tokyo' and 'Montreal')

• Usually a StringLookup layer is better

Hashing Layer

• Embedding: a dense representation of higher-dimensional data

• Consider a vocabulary of 50,000 words

• One-hot encoding would produce a 50,000 dimensional sparse
vector

• An embedding would be a smaller dense vector

• Such as 100 dimensions

• Embeddings are initialized randomly

• Trained by gradient descent

Encoding Categorical Features Using
Embeddings

Embeddings Will Gradually Improve
During Training

• Word embeddings of similar words tend to be close, and some
axes seem to encode meaningful concepts

Word Embeddings

• Input of 2 is always embedded to the same value

• These values are random (before training)

Embedding a Numerical Field

• Chain two layers

• StringLookup and Embedding

Embedding a Categorical Text
Attribute

• Three ways

• TextVectorization layer

• TensorFlow Text library

• Pretrained language model components

Text Preprocessing

• Splits sentences on whitespace

• Counts the words, sorts on descending frequency

• Numbers the words with Word IDs

• Unknown words are encoded as 1s

• Pads the first sentence below with zeros

TextVectorization

• TextVectorization layer output can be count or multi_hot

• But usually the best option is tf_idf

• Term frequency × inverse-document-frequency

• Words that are rare in the document are upweighted

Encoding WordIDs

• Pretrained model components

• For text, image, audio, and more

• The nnlm-en-dim50 module encodes sentences as 50-
dimensional vectors

Using Pretrained Language Model
Components

TensorFlow Hub

HuggingFace Transformers

• tf.keras.layers.Resizing

• Resizes the input images to the desired size

• tf.keras.layers.Rescaling

• Rescales the pixel values to a range, such as -1 to 1

• tf.keras.layers.CenterCrop

• Crops the image, keeping only a center patch of the desired
height and width

Image Preprocessing Layers

• RandomCrop

• RandomFlip

• RandomTranslation

• RandomRotation

• RandomZoom

• RandomHeight

• RandomWidth

• RandomContrast

Data Augmentation Layers

The TensorFlow Datasets Project

• Many common
datasets

• Images, text, video,
audio, and much
more

TensorFlow
Datasets

Ch 13b

