CNIT 50: Network Security Monitoring

1. Network Security Monitoring Rationale

Rev. 12-11-17

Aurora Attack December 2009

(not in textbook)

"Aurora" Attack on Google

- In December, 2009, Google discovered that confidential materials were being sent out of their network to China
- Google hacked into the Chinese server and stole data back, discovering that dozens of other companies had also been exploited, including Adobe and Intel

Aurora Attack Sequence

- Attacks were customized for each target based on vulnerable software and antivirus protection
 - 1. A user is tricked into visiting a malicious website
 - 2. Browser exploited to load malware on target PC
 - 3. Malware calls home to a control server
 - 4. Local privilege escalation

Aurora Attack Sequence

- Active Directory password database stolen and cracked
- 6. Cracked credentials used to gain VPN Access
- 7. Valuable data is sent to China

New Recommendations

Here is a few short-term recommendations, as given by iSEC:

- Log and inspect DNS traffic
- Establish internal network surveillance capability
- Control inbound and outbound network traffic
- Expand log aggregation
- Expand Windows endpoint control
- Audit VPN access and enrollment.
- Test malware scanning against known rootkits.

As regards long-term goals, companies should:

- Build a security operations team
- 2. Secure your overseas offices
- 3. Classify and catalog sensitive data
- Secure their Active Directory network (smartcard logins, steering clear of shared local accounts, using read-only domain controllers in overseas offices, and more).

The main lesson to be learned from these attacks is that times have changed. Anti-virus solutions and patching are no longer enough

Links Ch13z1, 13z2

Topics

- Introduction to NSM
- A Sample NSM Test
- The Range of NSM Data
- NSM Drawbacks

Introduction to NSM

Network Security Monitoring (NSM)

- The collection, analysis, and escalation of indications and warnings to detect and respond to intrusions
- A way to find intruders on your network and do something about them before they cause damage

Incident Response

- Discovering adversaries
- A continuous business process
- NSM is one of the best ways to mature from zero defenses to some defensive capability

Computer Incident Response Team (CIRT)

- One person or more
- Responsible for handling computer intrusions

CIRTs with NSM: Capabilities

- Collect rich network-derived data
- Analyze data to find compromised assets
- Work with owners to contain and frustrate the enemy
- Use NSM data for damage assessment

Figure 1-1. Enterprise security cycle

Preventing Intrusions

- NSM does not prevent intrusions
- Prevention eventually fails
- Security breaches are inevitable
- Determined adversaries will inevitably breach your defenses
- But they may not achieve their objective

Time

- Time is the key factor
- Sophisticated attackers seek persistence
- This provides a window of time
- Between initial unauthorized access and ultimate mission accomplishment

Why You Can't Prevent Intrusions

- If you can detect it, why can't you prevent it?
- Protection can't keep up with new tactics

Case Study

- South Caroline Dept. of Revenue in 2012
- Attacker got in by phishing email
- Stole data 4 weeks later
- Four weeks later they called Mandiant

incident

Lesson

- This attack succeeded
- But the target had 4 weeks to stop it
- Would have saved \$12 million

Statistics

- Median time between start of intrusion to incident response is > 240 days
- Only 1/3 of companies detected the intrusion themselves

Continuous Monitoring (CM)

- · CM monitors vulnerabilities (compliance)
- Very different from NSM
- DHS & NIST promote CM in federal gov't
- An improvement over Certification & Accreditation

Consider the differences in the ways that CM and NSM are implemented:

- A CM operation strives to find an organization's computers, identify vulnerabilities, and patch those holes, if possible.
- An NSM operation is designed to detect adversaries, respond to their activities, and contain them before they can accomplish their mission.

Other Defenses

- Firewall, Intrusion Prevention System (IPS),
 Antivirus (AV), Whitelisting, Data Loss
 Prevention (DLP), Digital Rights Management (DRM)
- All perform blocking, filtering, or denying
- Recognize malicious activity and stop it

Figure 1-3. Blocking, filtering, and denying mechanisms

Role of NSM

- NSM provides visibility, not control
- Makes failure of security controls more visible

Why Does NSM Work?

- Controls stop some attacks
 - Hit-and-run attacks
- But not determined attackers who want to gain persistence and remain in the system
 - They will find a way in
 - Then NSM and IR are needed

Setting Up NSM

- Select a suitable location to achieve network visibility
- Configure a switch to export copies of traffic
- Use a dedicated server as an NSM platform

Figure 1-4. Simple network diagram and NSM platform

Installing a Tap

- Better way
- Dedicated hardware to access network traffic

Figure 1-5. Network taps and switches

When NSM Won't Work

- Wireless traffic difficult to monitor, because it's encrypted
- Wireless traffic between wireless devices won't be monitored
- If it goes through the wired LAN, it will be detected
- Cellular traffic also difficult to monitor

Cloud or Hosted Environments

- Service provider owns infrastructure
- They may monitor network, but customers can't access the data
- Similar situation with ISPs and telcos

Is NSM Legal?

- Get legal advice
- · Wiretap Act: U.S. Code 18 § 2511
 - Company is allowed to monitor traffic when necessary to provide service or to protect their rights or property
 - Also OK if one party has given consent for monitoring
- State laws also may apply

Protecting User Privacy

- CIRTs should focus on external threats
- Forensics professionals focus on internal threats

Sample NSM Test

 Looks like someone got a root shell and ran the id command

Network Traffic

- DNS request and reply for www.test,yids.com
- HTTP request from browser and reply
- Browser requests favicon and server replies

Kahoot,

The Range of NSM Data

May Include

- Full content
- Extracted content
- Session data
- Transaction data
- Statistical data
- Metadata
- Alert data

Full Content Data

- Exact copies of all network traffic
- Reviewed in two stages
 - Summary of data headers
 - Inspection of individual packets

Headers from Wireshark

No.	Time	Source	Destination	Length Protocol	Info
	1 0.000000000	172.16.1.1	224.0.0.251	82 MDNS	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
	2 6.160324284	172.16.1.188	172.16.1.2	77 DNS	Standard query 0xf18e A www.testmyids.com
	3 6.160388273	172.16.1.188	172.16.1.2	77 DNS	Standard query 0x4237 AAAA www.testmyids.com
	4 6.192605470	172.16.1.2	172.16.1.188	93 DNS	Standard query response 0xf18e A www.testmyids.com A 82.165.177.15
	5 6.194689720	172.16.1.2	172.16.1.188	124 DNS	Standard query response 0x4237 AAAA www.testmyids.com CNAME www.te
	6 6.194889965	172.16.1.188	82.165.177.1	74 TCP	43656 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=
	7 6.380027648	82.165.177.154	172.16.1.188	60 TCP	80 → 43656 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460
	8 6.380074715	172.16.1.188	82.165.177.1	54 TCP	43656 → 80 [ACK] Seq=1 Ack=1 Win=29200 Len=0
	9 6.380271638	172.16.1.188	82.165.177.1	382 HTTP	GET / HTTP/1.1
	10 6.380408693	82.165.177.154	172.16.1.188	60 TCP	80 → 43656 [ACK] Seq=1 Ack=329 Win=64240 Len=0
	11 6.567109047	82.165.177.154	172.16.1.188	360 HTTP	HTTP/1.1 200 OK (text/html)
	12 6.567160106	172.16.1.188	82.165.177.1	54 TCP	43656 → 80 [ACK] Seq=329 Ack=307 Win=30016 Len=0
	13 8.568233174	172.16.1.188	82.165.177.1	54 TCP	43656 → 80 [FIN, ACK] Seq=329 Ack=307 Win=30016 Len=0
	14 8.568455079	82.165.177.154	172.16.1.188	60 TCP	80 → 43656 [ACK] Seq=307 Ack=330 Win=64239 Len=0
	15 8.568993657	82.165.177.154	172.16.1.188	60 TCP	80 → 43656 [FIN, PSH, ACK] Seq=307 Ack=330 Win=64239 Len=0
	16 8.569017749	172.16.1.188	82.165.177.1	54 TCP	43656 → 80 [ACK] Seq=330 Ack=308 Win=30016 Len=0

Headers from Tcpdump

```
03:11:53.031231 IP 172.16.1.188.38998 > 172.16.1.2.53: 65532+ A? www.testmyids.com. (35)
03:11:53.031292 IP 172.16.1.188.38998 > 172.16.1.2.53: 46799+ AAAA? www.testmyids.com. (35)
03:11:53.063962 ARP, Request who-has 172.16.1.188 tell 172.16.1.2, length 46
03:11:53.063978 ARP, Reply 172.16.1.188 is-at 00:0c:29:52:bb:35, length 28
03:11:53.064085 IP 172.16.1.2.53 > 172.16.1.188.38998: 65532 1/0/0 A 82.165.177.154 (51)
03:11:53.088789 IP 172.16.1.2.53 > 172.16.1.188.38998: 46799*- 2/0/0 CNAME www.testmyids.com., A 82.165.177.154 (82)
03:11:53.088991 IP 172.16.1.188.43658 > 82.165.177.154.80: Flags [S], seg 1034088282, win 29200, options [mss 1460,sackOK,TS val 9867151 ecr 0,nop,
03:11:53.269935 IP 82.165.177.154.80 > 172.16.1.188.43658: Flags [S.], seg 3493996192, ack 1034088283, win 64240, options [mss 1460], length 0
03:11:53.269967 IP 172.16.1.188.43658 > 82.165.177.154.80: Flags [.], ack 1, win 29200, length 0
03:11:53.270194 IP 172.16.1.188.43658 > 82.165.177.154.80: Flags [P.], seg 1:329, ack 1, win 29200, length 328: HTTP: GET / HTTP/1.1
03:11:53.270340 IP 82.165.177.154.80 > 172.16.1.188.43658: Flags [.], ack 329, win 64240, length 0
03:11:53.451877 IP 82.165.177.154.80 > 172.16.1.188.43658: Flags [P.], seq 1:307, ack 329, win 64240, length 306: HTTP: HTTP/1.1 200 OK
03:11:53.451896 IP 172.16.1.188.43658 > 82.165.177.154.80: Flags [.], ack 307, win 30016, length 0
03:11:55.449654 IP 82.165.177.154.80 > 172.16.1.188.43658: Flags [FP.], seq 307, ack 329, win 64240, length 0
03:11:55.449781 IP 172.16.1.188.43658 > 82.165.177.154.80: Flags [F.], seg 329, ack 308, win 30016, length 0
03:11:55.449994 IP 82.165.177.154.80 > 172.16.1.188.43658: Flags [.], ack 330, win 64239, length 0
```

Demo: tcpdump -n > foo

Whole Packet in Wireshark

Complete Packet in Tcpdump

Demo: tcpdump -nX > foo

TCP Stream in Wireshark

Right-click packet, Follow TCP Stream

Save PCAP File

- · In Wireshark, save as .pcap
 - NOT .pcapng

Start Xplico

- · Connect to http://172.16.1.196:9876/
 - Using the IP of your Security Onion VM
- · Log in as
 - · xplico
 - · xplico

Make a PCAP

- · On host system, open Wireshark
- Surf some non-encrypted sites in a Browser
 - · ad.samsclass.info
 - www.testmyids.com
 - http://www.kittenwar.com/
- · Save in Wireshark/tcpdump pcap format

Xplico Demo Steps

- Make a new case and a new session
- Upload the PCAP
- Wait for decoding

Extracted Content Data

- High-level data streams
- · Like files, images, media
- · Without IP or MAC addresses, etc.
- Wireshark is good at extracting files
- · Xplico and other tools can do it too

Session Data

- Record of the conversation between two nodes
- Bro can generate session data logs
 - Sample data from link Ch 1a

```
$ gzcat 2013-01-01/conn.00\:00\:00-00\:00.log.gz | head
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2013-01-01-00-00-01
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto service dura
#types time string addr port addr port enum string interval count count s
1357016390.095574 qfuVcja4nb9 43.45.3.9 46137 93.191.121.39 53 udp dns 0.
1357016390.255919 mW8KwF7YXSb 43.45.3.9 22314 204.212.170.189 53 udp dns
```

Session Data

- Session data is much smaller than full content data (PCAPs)
- Easier to store and search through
- Cannot reconstruct files and web pages from session data

Transaction Data

- Similar to session data
- Focuses on requests and replies
- Example: Bro http.log (link Ch 1b)

```
# ts uid orig_h orig_p resp_h resp_p
1311627961.8 HSH4uV8KVJg 192.168.1.100 52303 192.150.187.43 80
```

```
# method host uri referrer user_agent
GET bro.org / - <...>Chrome/12.0.742.122<...>
```

Statistical Data

- Summaries of data
- Examples from Wireshark
 - Statistics, Capture File Properties
 - Statistics, Protocol Hierarchy
 - Statistics, Packet Lengths

First packet: 2017-08-28 14:11:08 Last packet: 2017-08-28 14:11:54

Elapsed: 00:00:46

Capture

Hardware: Unknown
OS: Unknown
Application: Unknown

Interfaces

InterfaceDropped packetsCapture filterLink typePacket size limitUnknownUnknownUnknownEthernet262144 bytes

Statistics

Measurement	Captured	<u>Displayed</u>	<u>Marked</u>
Packets	6102	6102 (100.0%)	N/A
Time span, s	46.304	46.304	N/A
Average pps	131.8	131.8	N/A
Average packet size, B	821.5	821.5	N/A
Bytes	5015645	5015645 (100.0%)	0
Average bytes/s	108 k	108 k	N/A
Average bits/s	866 k	866 k	N/A

Wireshark · Protocol Hierarchy Statistics · demo2pm

• • •

Protocol ▼	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Pack
▼ Frame	100.0	6102	100.0	5015645	866 k	0
▼ Ethernet	100.0	6102	1.7	85428	14 k	0
 Internet Protocol Version 6 	0.1	4	0.0	160	27	0
 User Datagram Protocol 	0.1	4	0.0	32	5	0
Multicast Domain Name System	0.1	4	0.0	160	27	4
 Internet Protocol Version 4 	99.9	6093	2.4	121860	21 k	0
 User Datagram Protocol 	2.7	167	0.0	1336	230	0
Simple Service Discovery Protocol	0.1	4	0.0	700	120	4
QUIC (Quick UDP Internet Connections)	2.1	127	0.5	25673	4435	127
Network Time Protocol	0.2	10	0.0	480	82	10
Multicast Domain Name System	0.1	4	0.0	160	27	4
Dropbox LAN sync Discovery Protocol	0.1	4	0.0	520	89	4
Domain Name System	0.3	18	0.0	1129	195	18
 Transmission Control Protocol 	97.1	5926	95.3	4777597	825 k	4870
Secure Sockets Layer	19.1	1165	98.7	4948048	854 k	988
Malformed Packet	0.1	4	0.0	0	0	4
 Hypertext Transfer Protocol 	1.0	64	4.1	205039	35 k	39
Line-based text data	0.2	15	2.1	105504	18 k	15
JPEG File Interchange Format	0.2	10	2.7	137065	23 k	10
Address Resolution Protocol	0.1	5	0.0	140	24	5

Wireshark · Packet Lengths · demo2pm Topic / Item ▼ Count Average Max val Min val Rate (ms) Percent Burst rate Burst start 6102 Packet Lengths 42 1514 100% 16.181 821.97 0.1318 3.3200 0-19 0.0000 0.00% 0 20-39 0 0.0000 0.00% 40-79 2255 65.48 42 79 0.0487 36.96% 1.2100 16.154 80-159 191 96.42 80 159 0.0041 3.13% 0.7100 16.292 233.33 160-319 131 160 313 0.0028 2.15% 0.0900 43.411 320-639 467.88 0.0600 18.710 209 323 636 0.0045 3.43% 640-1279 587 1029.45 652 1258 0.0127 9.62% 0.1700 16.065 2729 1280-2559 1508.59 1280 1514 0.0589 44.72% 2.2900 16.181 2560-5119 0 0.0000 0.00% 5120 and greater 0 0.0000 0.00%

Metadata

- Data about data
- Extract key elements from network traffic
- Use external tools to learn more about them
- Ex: whois, robtex (link Ch 1c)

Domain Name: TESTMYIDS.COM Registry Domain ID: 555360075_DOMAIN_COM-VRSN Registrar WHOIS Server: whois.123-reg.co.uk Registrar URL: http://www.meshdigital.com Updated Date: 2016-08-08T23:52:59Z Creation Date: 2006-08-15T11:54:28Z Registry Expiry Date: 2018-08-15T11:54:28Z Registrar: 123-Reg Limited Registrar IANA ID: 1515 Registrar Abuse Contact Email: Registrar Abuse Contact Phone: Domain Status: clientDeleteProhibited https://icann.org/epp#clientDeleteProhibited Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibited Domain Status: clientUpdateProhibited https://icann.org/epp#clientUpdateProhibited Name Server: NS59.1AND1.CO.UK Name Server: NS60.1AND1.CO.UK DNSSEC: unsigned

Sams-MacBook-Pro-3:proj sambowne\$ whois testmyids.com

Alert Data

- Event that triggers an Intrusion Detection System
 - Such as Snort or Suricata
 - Squil is a graphical console to view alert data
 - Image on next slide from link Ch 1d

What's the Point of All this Data?

- Equips CIRTs to detect, respond to, and contain intruders
- Complements efforts of other tools and systems
- Analysts can discover and act on intrusions early

Retrospective Security Analysis (RSA)

- Applies newly discovered threat intelligence
- To previously collected data
- Hoping to find intruders who evaded earlier detection

Postmortem Analysis

Examination following incident resolution

NSM Drawbacks

Difficult Situations

- Encrypted traffic such as VPNs, which conceal data, and also source and destination addresses
- Network Address Translation (NAT) conceals source and destination addresses
- Mobile devices use networks that are not monitored
- High traffic volume may overwhelm NSM platform
- Privacy concerns may limit access to traffic

Kahoot,