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Elliptic Curve Cryptography (ECC) 
• Around sinde the 1980s 
• Same level of security as RSA with shorter keys 
• ECC keys are 160-256 bits; RSA needs 1024-3072 bits 
• ECC calculations are faster 
• ECC uses less network bandwidth because signatures and 

keys are shorter

4
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9.1 How to Compute with Elliptic 
Curves 
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Circle and Ellipse
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Computations on Elliptic Curves

Example: y2 = x3 −3x+3 over R

7

• Elliptic curves are polynomials that define points  
based on the (simplified) Weierstraß equation: 

y2 = x3 + ax + b 

for parameters a,b that specify the exact shape  
of the curve 

• On the real numbers and with parameters  
a, b ∈ R, an elliptic curve looks like this !!

• Elliptic curves can not just be defined over the  
real numbers R but over many other types of  
finite fields.
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Computations on Elliptic Curves (ctd.)
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In cryptography, we are interested in elliptic curves modulo a prime p:

 Note that Zp = {0,1,…, p -1} is a set of integers with modulo p arithmetic
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Computations on Elliptic Curves (ctd.)

▪▪     Identity Point θ 
▪▪  In any group, a special element is required to allow for the identity operation, 

i.e., 
given P     ∈  E: P + θ = P = θ + P 

▪▪  This identity point (which is not on the curve) is  additionally added to the 
group definition 

▪▪                   This (infinite) identity point is denoted by θ 

▪▪                    Elliptic Curves are symmetric along the x-axis 
▪▪  Up to two solutions y and -y exist for each  quadratic residue x of the 

elliptic curve 
▪▪  For each point P =(x,y), the inverse or negative  point is defined as -P =(x,-y)
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Computations on Elliptic Curves (ctd.)

▪▪  Generating a group of points on elliptic curves  
based on point addition operation P+Q = R, i.e.,

(xP,yP) + (xQ,yQ) = (xR,yR) 

▪▪              Geometric Interpretation of point addition operation 
▪▪  Draw straight line through P and Q;  
    if P=Q use  tangent line instead 

▪▪  Mirror third intersection point of drawn line with  
the elliptic curve along the x-axis

Point Addition

Point Doubling
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Computations on Elliptic Curves (ctd.)

▪▪           Example: Given E: y2 = x3+2x+2 mod 17 and point P=(5,1) 
Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3)

s = = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17 

y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)

2
1 

2 y1

3x  + a
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Computations on Elliptic Curves (ctd.)

▪▪           The points on an elliptic curve and the point at infinity θ form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 
3P = 2P+P = (10,6) 
4P = (3,1) 
5P = (9,16) 
6P = (16,13) 
7P = (0,6) 
8P = (13,7) 
9P = (7,6) 
10P = (7,11)

11P = (13,10) 
12P = (0,11) 
13P = (16,4) 
14P = (9,1) 
15P = (3,16) 
16P = (10,11) 
17P = (6,14) 
18P = (5,16) 
19P = θ P

θ 

This elliptic curve has order #E = |E| = 19 since it contains  
19 points in its cyclic group.
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Number of Points on an Elliptic Curve

• How many points can be on an arbitrary elliptic curve? 

• Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points 

• Interpretation: The number of points is close to the prime p 
• Example: To generate a curve with about 2160 points, a prime with a length of about  

160 bits is required

14
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Elliptic Curve Discrete Logarithm Problem

▪▪  Cryptosystems rely on the hardness of the Elliptic Curve 
Discrete Logarithm Problem (ECDLP)

15
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Elliptic Curve Discrete Logarithm Problem

▪▪  Cryptosystems are based on the idea that d is large and 
kept secret and attackers cannot compute it easily 
▪▪  If d is known, an efficient method to compute the point 

multiplication dP is required to create a reasonable 
cryptosystem 

▪▪                   Known Square-and-Multiply Method can be adapted to 
Elliptic Curves 
▪▪                   The method for efficient point multiplication on elliptic 
curves: Double-and-Add Algorithm

16



Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

 Double-and-Add Algorithm 

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits di 

Output: T = d P

17
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Example: Double-and-Add Algorithm for Point Multiplication
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9.3 Diffie-Hellman Key Exchange with 
Elliptic Curves 

20
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Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

▪▪                    Given a prime p, a suitable elliptic curve E and a point P=(xP,yP) 
▪▪                    The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

▪▪                    Joint secret between Alice and Bob: TAB = (xAB, yAB) 

▪▪  One of the coordinates of the point TAB (usually the x-coordinate) 
can be used as session key (often after applying a hash function)

Alice

Compute aB = Tab

Choose kPrA= a ∈ {2, 3,…, #E-1} 
Compute kPubA= A = aP = (xA,yA)

Bob

Compute bA = Tab

A 

B

21

Choose kPrB= b ∈ {2, 3,…, #E-1} 
Compute kPubB= B = bP = (xB,yB)
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ECDH (ctd.)
▪▪                    The ECDH is often used to derive session keys for (symmetric) 
encryption 
▪▪                    One of the coordinates of the point TAB (usually the x-coordinate) is 
taken as session key

▪▪                    In some cases, a hash function is used to derive the 
session key

Alice

Compute aB = Tab = (xT,yT)

Define key kAES = xT 

Given a message m: 
Encrypt c = AESkAES(m)

Choose kPrA= a ∈ {2, 3,…, #E-1} 
Compute kPubA= A = aP = (xA,yA)

Compute bA = Tab= (xT,yT)

Define key kAES = xT

Received ciphertext c: 
Decrypt m = AES-1

kAES(c)

A 

B

Bob 

Choose kPrB= b ∈ {2, 3,…, #E-1} 
Compute kPubB= B = bP = (xB,yB)

c

EC
D

H
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9.4 Security 

23
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Security Aspects

▪▪  Why are parameters signficantly smaller for elliptic curves (160-256 
bit) than for RSA  (1024-3076 bit)? 
▪▪  Attacks on groups of elliptic curves are weaker than available 

factoring algorithms or integer DL attacks 
▪▪  Best known attacks on elliptic curves are the Baby-Step Giant-

Step and Pollard-Rho method

▪▪  Number of steps required:

▪▪  An elliptic curve using a prime p with 160 bits (and roughly 2160 

points) provides a security of 280 steps required by an attacker 
▪▪  An elliptic curve using a prime p with 256 bit (roughly 2256 points) 

provides a security of  2128 steps

p
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9.5 Implementation in Software and 
Hardware 

25
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Implementations in Hardware and Software

▪▪   Computations have four layers: 
▪▪   Basic modular arithmetic: 

computationally most expensive 
▪▪   Group operation: point doubling and point 

addition 
▪▪   Point multiplication: Double-and-Add 

method 
▪▪   Upper layer protocols: like ECDH 

and  ECDSA 

▪▪   Most efforts should go in optimizations of the  
modular arithmetic operations, such as 

▪▪                  Modular addition and subtraction 
▪▪                 Modular multiplication 
▪▪                 Modular inversion

Protocol  
(ECDSA) 

Point  
Multiplication  

(k·P) 

Group Operation  
P+Q, 2·P 

Modular Arithmetic  
( +, -, x , ÷ )
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Implementations in Hardware and Software

▪▪                   Software implementations 
▪▪  Optimized 256-bit ECC implementation on  

3GHz 64-bit CPU requires about 2 ms per  
point multiplication 

▪▪  Less powerful microprocessors (e.g, on  
SmartCards or cell phones) even take  
significantly longer (>10 ms) 

▪▪                   Hardware implementations 
▪▪  High-performance implementations with 

256-bit special primes can compute a point  
multiplication in a few hundred 
microseconds on reconfigurable hardware 

▪▪  Dedicated chips for ECC can compute a  
point multiplication in a few tens of  
microseconds

27
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Key Length
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• To double the effort for an attacker, add two bits to 
ECC key length 

• For RSA and DL, you must add 20-30 bits to double 
an attacker's effort
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Attacks against the Discrete Logarithm Problem 

Elliptic curves challenges with key sizes of 108 and 109 bits 
have been solved 

But no solutions are known for 131-bit keys
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Quantum Computers
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• The existence of quantum computers would probably 
be the end for ECC, RSA & DL 

• TEXTBOOK SAYS: 

• At least 2-3 decades away, and some people 
doubt that QC will ever exist
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NIST Recommendations from 2016
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NIST Recommendations from 2016
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▪▪            Elliptic Curve Cryptography (ECC) is based on the discrete logarithm 
problem. 

It requires, for instance, arithmetic modulo a prime. 

▪▪            ECC can be used for key exchange, for digital signatures and for encryption. 

▪▪  ECC provides the same level of security as RSA or discrete logarithm 
systems  over Zp with considerably shorter operands (approximately 160–256 
bit vs.1024–3072 bit), which results in shorter ciphertexts and signatures.

▪▪  In many cases ECC has performance advantages over other public-
key  algorithms. 

▪▪  ECC is slowly gaining popularity in applications, compared to other public-
key  schemes, i.e., many new applications, especially on embedded 
platforms,  make use of elliptic curve cryptography.

Lessons Learned




