Understanding Cryptography — A Textbook for

Students and Practitioners
by Christof Paar and JanPelzl

www.crypto-textbook.com

— The RSA Cryptosystem

ver. December 7, 2010

These slides were prepared by Benedikt Driessen, Christof Paar and Jan Pelzl
and modified by Sam Bowne


http://www.crypto-textbook.com/

S ome legal stuff (sorry): Terms of use

e The slides can used free of charge. All copyrights for the slides
remain with Christof Paar and Jan Pelzl.

e The title of the accompanying book “Understanding Cryptography”
by Springer and the author’s names must remain on each slide.

» |f the slides are modified, appropriate credits to the book authors
and the book title must remain within the slides.

* ltis not permitted to reproduce parts or all of the slides in printed
form whatsoever without written consent by the authors.

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

e Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

e Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



The RSA Cryptosystem

Martin Hellman and Whitfield Diffie published their landmark public-
key paper in 1976

Ronald Rivest, Adi Shamir and Leonard Adleman proposed the
asymmetric RSA cryptosystem in1977

RSA is the most widely used asymmetric cryptosystem although
elliptic curve cryptography (ECC) is becoming increasingly
popular

RSA is mainly used for two applications
« Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding

Cryptography)
« Digital signatures (cf. Chptr 10 of Understanding Cryptography)

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Encryption and Decryption

RSA Encryption Given the public key (n,e) = k,,;, and the plaintext x, the
encryption function is:

y =€k, (x) =x°“ mod n (7.1)

where x,y € Z,,.

RSA Decryption Given the private key d = k,, and the ciphertext y, the
decryption function is:

x=dy (y)= yd mod n (7.2)

pr

where x.y € Z,,.

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl




Key Generation

RSA Key Generation

Output: public key: k,,» = (n,e) and private key: k,, = (d)

1. Choose two large primes p and q.

2. Compute n = p-q.

3. Compute @(n)=(p—1)(g—1).

4. Select the public exponent e € {1,2,...,®(n)— 1} such that

ged(e, @(n)) = 1.
5. Compute the private key d such that

d-e=1mod ®@(n)

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl




RSA Encryption in Python

>>> from Crypto.PublicKey import RSA

>>> key = RSA.generate(2048)

>>> publickey = key.publickey()

>>> plain = 'encrypt this message'’

>>> ciphertext = publickey.encrypt(plain, 0)[0]

>>> print ciphertext.encode("hex")
536edad71ab9e526442f2b56e71fa5abfc603c88c2eac03d91f22babb6d@ealdbab2e8c8247df477c¢
5f15ce3¢ccc551227799d1f4f8943fa8bd278639bd90292¢5799d11f9f6601c94d88f10fc314317fb
1d75f55e20d1c5dd4e7448ff39018dab44091b6664610657516bfaf95a3f0e63e91941f1e08343421
f7¢cf8c35550ed951b240e4c42194b8bfc73ec3ccd5191f7¢c489¢28aaf799c78d6a695707423172¢c05
4edfd8f4c2ac0f5c25a996647b89581160983db8bdf2214fel31b0f3d558aeb7560e671062110224
fd21f18034eebb9c8773e6310180975539765d7235235a4467T037179e94e504b21f9ffac6679570a
958481238cdd3243723ed4722e549498

RSA Decryption in Python

>>> decrypted = key.decrypt(ciphertext)
>>> print decrypted
encrypt this message




Speed of Calculations

LENGTH: 1024

0.150621891022 sec. for one RSA key generation
0.026349067688 sec. for 400 RSA encryptions
0.0133030414581 sec. for 5 RSA decryptions

* Encryption is fastest
e Decryption is much slower
* Key generation is slowest

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Key Generation

e Like all asymmetric schemes, RSA has set-up phase during which

the private and public keys are computed

Remarks:

e Choosing two large, distinct primes p, g (in Step 1) is non-trivial
e gcd(e, ®(n)) = 1 ensures that e has an inverse and, thus, that there

10

Is always a private key d

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Example: RSA with small numbers

ALICE BOB

Message x =4 1.Choose p =3 and q = 11
2.Computen=p *qg =33 3.

®(n) = (3-1) * (11-1) = 20

4. Choose e =3

5 d=Ze?’=7mod?20
Kouw = (33,3)

<
«

y=xe=43 =31 mod 33

v

yd=317 =4 = x mod 33

11 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



12

Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

e Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



13

Implementation aspects

 The RSA cryptosystem uses only one arithmetic operation (modular
exponentiation) which makes it conceptually a simple asymmetric
scheme

e Even though conceptually simple, due to the use of very long
numbers, RSA is orders of magnitude slower than symmetric
schemes, e.g., DES, AES

* When implementing RSA (esp. on a constrained device such as
smartcards or cell phones) close attention has to be paid to the
correct choice of arithmetic algorithms

e The square-and-multiply algorithm allows fast exponentiation, even
with very long numbers...

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Square-and-Multiply

y = €k, (x) =x"mod n  (encryption)

x =dy, (y) = yY mod n (decryption)

* Consider RSA with a 1024-bit key

* We need to calculate x® where e is 1024
bits long

o X*X*X*x.. 21924 multiplications

* Competely impossible -- we can't even
crack a 72-bit key yet (272 calculations)

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Square-and-Multiply

* Use memory to save time
* Do these ten multiplications

° X2=X%*X

e X4 =x2* x2
e X8 =x4 * x4
* Xx16 = x8 * x8

* x1024 = x512 * x512

* Combine the results to make any exponent

15
Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Square-and-Multiply

o With this trick, a 1024-bit exponent can be
calculated with only 1536 muiltiplications

* But each number being multiplied is 1024
bits long, so it still takes a lot of CPU

16
Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



17

Speed-Up Techniques

e Modular exponentiation is computationally intensive
e Even with the square-and-multiply algorithm, RSA can be quite slow
on constrained devices such as smart cards
e Some important tricks:
. Short public exponent e
. Chinese Remainder Theorem (CRT)

. Exponentiation with pre-computation (not covered here)

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Fast encryption with small public exponent

* Choosing a small public exponent e does not weaken the security of

RSA
* A small public exponent improves the speed of the RSA encryption
significantly
Public Key e as binary string #MUL +#SQ
21+1 =3 (11), T+1=2
2441 =17 (10001), 4+1=5
216+ 1 (1 0000 0000 0000 0001), 16 +1=17

* This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA
the fastest asymmetric scheme with regard to encryption!

18 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Fast decryption with CRT

e Choosing a small private key d results in security weaknesses!
0 In fact, d must have at least 0.3t bits, where t is the bit
length of the modulus n

* However, the Chinese Remainder Theorem (CRT) can be used to
(somewhat) accelerate exponentiation with the private key d

e |t gets 4 times faster

19 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl






21

Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects
 Finding Large Primes

e Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



22

Finding Large Primes

Generating keys for RSA requires finding two large primes p and g
such that n = p * g is sufficiently large

The size of p and q is typically half the size of the desired size of n
To find primes, random integers are generated and tested for
primality:

' ; : ,p’ is prime*
RNG P .| Primality Test , OR
Ca;ﬁggte ,p' is composite”

|

a

The random number generator (RNG) should be non-predictable
otherwise an attacker could guess the factorization of n

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



How Common Are Primes?

2
In(p)

P(p is prime) ~

* For a 1024-bit key, p and g will be around 512 bits long

* So the density of primes near p and g will be

2 2 1
In(2512) ~ 5121In(2) ~ 177

P(p is prime) &

* So guessing a few hundred times should be enough

23 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



24

Primality Tests

Factoring p and g to test for primality is typically not feasible
However, we are not interested in the factorization, we only want to
know whether p and g are composite

Typical primality tests are probabilistic, i.e., they are not 100%
accurate but their output is correct with very high probability
A probabilistic test has two outputs:

. ,p’ IS composite” — always true

. ,p' IS a prime” — only true with a certain probability
Among the well-known primality tests are the following

o Fermat Primality-Test

. Miller-Rabin Primality-Test

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



Miller-Rabin Primality Test

Input: prime candidate p with p— 1 = 2"r and security parameter s
Output: statement *“p is composite™ or “p is likely prime”™
Algorithm:

I FORi=1TOs

choose randoma € {2,3,...,p —2}

1.2 z=da mod p
1.3 IFz£landz# p—1
1.4 FOR j=1TO u— 1

z=2z2 mod p

IFz=1

RETURN (*p is composite™)

1.5 IFz#p—1

RETURN (“p is composite™)
2  RETURN (*p is likely prime™)

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl




Number of Tests Required

Table 7.2 Number of runs within the Miller—Rabin primality test for an error probability of less
than 280

Bit lengths of p|Security parameter s

250 11
300 9
400 6
500 5

(S

600




27

RSA in Practice: Padding

 Problems with "scholbook RSA"

1. RSA encryption is deterministic

Repeated plaintext results in repeated ciphertext

2. Paintext x=0, x=1, or x=-1 produce ciphertext y=0, y=1, or y=-1

3. RSA is malleable

Multiplying ciphertext by an integer without decrypting it can
lead to readable plaintext

Could be used to change the amount of a transaction

Replace y with s * y

(s¢y)? = s x* = sx mod n

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



28

PKCS#1 (v2.1) Padding

Put 0, a "MaskedSeed", a Hash, 1, and more zeroes before the

message M

Total padded length = same as n
e e.g. 1024 or 2048 bits

seed Hash(L) | PS | 0x01 | M
0x00 D D
seedMask dbMask
. S - -
] |H| k=\H\—1

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl




29

PKCS#1 (v2.1) Padding

* When decrypting, verify structure of the message
* This removes these weaknesses in RSA:

1. Deterministic

2.1,0, and -1

3. Malleable

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



30

Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

« Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



31

Attacks and Countermeasures 1/3

There are three general attack families against RSA:

1. Protocol attacks
2. Mathematical attacks
3. Side-channel attacks

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



32

Protocol attacks

* Exploit the malleability of RSA, i.e., the property that a
ciphertext can be transformed into another ciphertext which

decrypts to a related plaintext — without knowing the private key

* Can be prevented by proper padding

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



33

Mathematical attacks

* The best known attack is factoring of n into p and q
* Attacker can then decrypt the message

®(n) =(p—1)(g—1)
d~' = emod @(n)
1

x = y" mod n.

e Can be prevented using a sufficiently large modulus n
e Current record: 729 bits factored in 2016
e Link Ch 7a

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



RSA Numbers

e A challenge to test security of RSA encryption

Factoring RSA Numbers

1200
1100
1000
900
800
700
600
500

400
®

300
1990 2000 2010 2020 2030 2040

# Bits

Year



Side-Channel Attacks

* Exploit physical leakage of RSA implementation
(e.g., power consumption, EM emanation, etc.)

* Ex: Power Consumption

e Square and Multiply operations take a lot of
power
« Two bursts of power consumption: key bit is 1

e One burst of power consumption: key bit is O

35 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



operations: S SM SM S SM § § SM SM SM § SM
privatekey: 0 1 1 O 1 00 I 1 1 O 1

Power Trace

. Power

Time



37

Power Consumption

 Countermeasure:

e Perform a dummy multiplication operation for
each 0 bit

» S0 the power consumption remains the same

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



38

Fault-Injection Attacks

 Inducing faults in the device while decryption is executed can lead
to a complete leakage of the private key

* In 2010, researchers extracted a 1024-bit key in 24 hours
e Links Ch 7b, 7c

% of private key recovered

0 I | | I I I I
0 100 200 300 400 500 600 700
Number of corrupted signatures processed

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



39

Content of this Chapter

e The RSA Cryptosystem

* Implementation aspects

* Finding Large Primes

e Attacks and Countermeasures

* Lessons Learned

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl



40

Lessons Learned

 RSA s the most widely used public-key cryptosystem
 RSA is mainly used for key transport and digital signatures

* The public key e can be a short integer, the private key d needs to
have the full length of the modulus n

» RSA relies on the fact that it is hard to factorize n

e Currently 1024-bit cannot be factored, but progress in factorization
could bring this into reach within 10-15 years. Hence, RSA with a
2048 or 3076 bit modulus should be used for long-term security

* A naive implementation of RSA allows several attacks, and in
practice RSA should be used together with padding

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl






