Understanding Cryptography – A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 7 – The RSA Cryptosystem

ver. December 7, 2010

These slides were prepared by Benedikt Driessen, Christof Paar and Jan Pelzl and modified by Sam Bowne

Understand

Some legal stuff (sorry): Terms of use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

The RSA Cryptosystem

- Martin Hellman and Whitfield Diffie published their landmark publickey paper in 1976
- Ronald <u>Rivest</u>, Adi <u>Shamir and Leonard Adleman proposed the</u> asymmetric RSA cryptosystem in1977
- RSA is the most widely used asymmetric cryptosystem although elliptic curve cryptography (ECC) is becoming increasingly popular
- RSA is mainly used for two applications
 - Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding Cryptography)
 - Digital signatures (cf. Chptr 10 of *Understanding Cryptography*)

Encryption and Decryption

RSA Encryption Given the public key $(n, e) = k_{pub}$ and the plaintext *x*, the encryption function is:

$$y = e_{k_{pub}}(x) \equiv x^e \mod n \tag{7.1}$$

where $x, y \in \mathbb{Z}_n$.

RSA Decryption Given the private key $d = k_{pr}$ and the ciphertext *y*, the decryption function is:

$$x = d_{k_{pr}}(y) \equiv y^d \mod n \tag{7.2}$$

where $x, y \in \mathbb{Z}_n$.

Key Generation

RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key: $k_{pr} = (d)$

- 1. Choose two large primes *p* and *q*.
- 2. Compute $n = p \cdot q$.
- 3. Compute $\Phi(n) = (p-1)(q-1)$.
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n) 1\}$ such that

$$gcd(e, \Phi(n)) = 1.$$

5. Compute the private key d such that

$$d \cdot e \equiv 1 \mod \Phi(n)$$

RSA Encryption in Python

>>> from Crypto.PublicKey import RSA >>> key = RSA.generate(2048) >>> publickey = key.publickey() >>> plain = 'encrypt this message' >>> ciphertext = publickey.encrypt(plain, 0)[0] >>> print ciphertext.encode("hex") 536eda071ab9e526442f2b56e71fa5abfc603c88c2eac03d91f22bab6d0ea14bab2e8c8247df477c 5f15ce3ccc551227799d1f4f8943fa8bd278639bd90292c5799d11f9f6601c94d88f10fc314317fb 1d75f55e20d1c5dd4e7448ff39018dab44091b6664610657516bfaf95a3f0e63e9194f1e08343421 f7cf8c35550ed951b240e4c42f94b8bfc73ec3ccd519f7c489c28aaf799c78d6a695707423f72c05 4edfd8f4c2ac0f5c25a996647b8958f160983db8bdf2214fe131b0f3d558aeb7560e67f0621f0224 fd21f18034eebb9c8773e6310f80975539765d7235235a446f037179e94e504b21f9ffac6679570a 95848f238cdd3243723ed4722e549498

RSA Decryption in Python

>>> decrypted = key.decrypt(ciphertext)
>>> print decrypted
encrypt this message

Speed of Calculations

LENGTH: 1024 0.150621891022 sec. for one RSA key generation 0.026349067688 sec. for 400 RSA encryptions 0.0133030414581 sec. for 5 RSA decryptions

- Encryption is **fastest**
- Decryption is **much slower**
- Key generation is **slowest**

Key Generation

• Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed

Remarks:

- Choosing two large, distinct primes *p*, *q* (in Step 1) is non-trivial
- gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there is always a private key d

Example: RSA with small numbers

ALICE

Message x = 4

BOB

- 1.Choose p = 3 and q = 112.Compute n = p * q = 33 3. $\Phi(n) = (3-1) * (11-1) = 20$
- 4. Choose *e* = 3

5.
$$d \equiv e^{-1} \equiv 7 \mod 20$$

 $y = x^e \equiv 4^3 \equiv 31 \mod 33$

 $y^{d} = 31^{7} \equiv 4 = x \mod 33$

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

Implementation aspects

- The RSA cryptosystem uses only one arithmetic operation (modular exponentiation) which makes it conceptually a simple asymmetric scheme
- Even though conceptually simple, due to the use of very long numbers, RSA is orders of magnitude slower than symmetric schemes, e.g., DES, AES
- When implementing RSA (esp. on a constrained device such as smartcards or cell phones) close attention has to be paid to the correct choice of arithmetic algorithms
- The square-and-multiply algorithm allows fast exponentiation, even with very long numbers...

Square-and-Multiply

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$
 (encryption)
 $x = d_{k_{pr}}(y) \equiv y^d \mod n$ (decryption)

- Consider RSA with a 1024-bit key
- We need to calculate x^e where e is 1024 bits long
- x * x * x * x 2¹⁰²⁴ multiplications
- Competely impossible -- we can't even crack a 72-bit key yet (2⁷² calculations)

Square-and-Multiply

- Use memory to save time
- Do these ten multiplications
 - x2 = x * x
 - x4 = x2 * x2
 - x8 = x4 * x4
 - x16 = x8 * x8
 - . .
 - x1024 = x512 * x512
 - • •
- Combine the results to make any exponent

Square-and-Multiply

- With this trick, a 1024-bit exponent can be calculated with only 1536 multiplications
- But each number being multiplied is 1024 bits long, so it still takes a lot of CPU

Speed-Up Techniques

- Modular exponentiation is computationally intensive
- Even with the square-and-multiply algorithm, RSA can be quite slow on constrained devices such as smart cards
- Some important tricks:
 - Short public exponent *e*
 - Chinese Remainder Theorem (CRT)
 - Exponentiation with pre-computation (not covered here)

Fast encryption with small public exponent

- Choosing a small public exponent *e* does not weaken the security of RSA
- A small public exponent improves the speed of the RSA encryption significantly

Public Key	e as binary string	#MUL + #SQ
21+1 = 3	(11) ₂	1 + 1 = 2
24+1 = 17	(1 0001) ₂	4 + 1 = 5
2 ¹⁶ + 1	(1 0000 0000 0000 0001) ₂	16 + 1 = 17

• This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA the fastest asymmetric scheme with regard to encryption!

Fast decryption with CRT

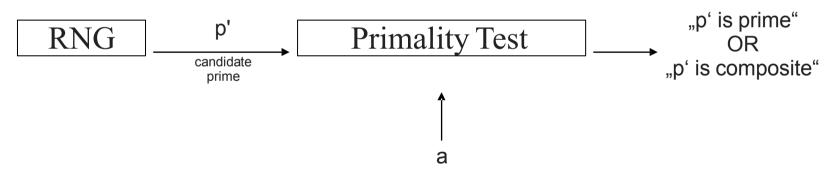
- Choosing a small private key *d* results in security weaknesses!
 - In fact, d must have at least 0.3t bits, where t is the bit length of the modulus n
- However, the Chinese Remainder Theorem (CRT) can be used to (somewhat) accelerate exponentiation with the private key *d*
- It gets 4 times faster

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

Finding Large Primes

- Generating keys for RSA requires finding two large primes p and q such that n = p * q is sufficiently large
- The size of *p* and *q* is typically half the size of the desired size of *n*
- To find primes, random integers are generated and tested for primality:



• The random number generator (RNG) should be non-predictable otherwise an attacker could guess the factorization of *n*

How Common Are Primes?

$$P(\tilde{p} \text{ is prime}) \approx \frac{2}{\ln(\tilde{p})}$$

- For a 1024-bit key, p and q will be around 512 bits long
- So the density of primes near p and q will be

$$P(\tilde{p} \text{ is prime}) \approx \frac{2}{\ln(2^{512})} = \frac{2}{512 \ln(2)} \approx \frac{1}{177}$$

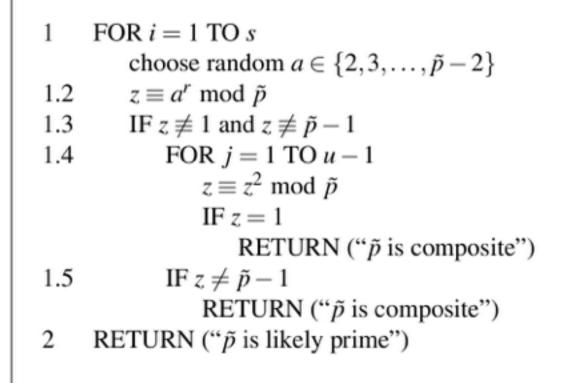
• So guessing a few hundred times should be enough

Primality Tests

- Factoring *p* and *q* to test for primality is typically not feasible
- However, we are not interested in the factorization, we only want to know whether p and q are composite
- Typical primality tests are probabilistic, i.e., they are not 100% accurate but their output is correct with very high probability
- A probabilistic test has two outputs:
 - "p' is composite" always true
 - "p' is a prime" only true with a certain probability
- Among the well-known primality tests are the following
 - Fermat Primality-Test
 - Miller-Rabin Primality-Test

Miller-Rabin Primality Test

Input: prime candidate \tilde{p} with $\tilde{p} - 1 = 2^{u}r$ and security parameter *s* **Output**: statement " \tilde{p} is composite" or " \tilde{p} is likely prime" **Algorithm**:



Number of Tests Required

Table 7.2 Number of runs within the Miller–Rabin primality test for an error probability of less than 2^{-80}

Bit lengths of \tilde{p}	Security parameter s
250	11
300	9
400	6
500	5
600	3

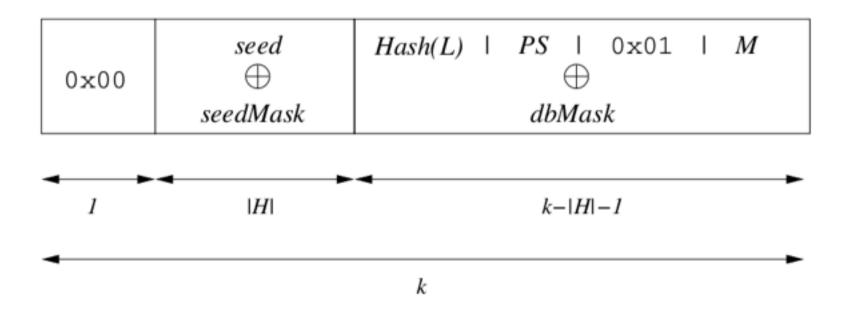
RSA in Practice: Padding

- Problems with "scholbook RSA"
 - 1. RSA encryption is **deterministic**
 - Repeated plaintext results in repeated ciphertext
 - 2. Paintext x=0, x=1, or x=-1 produce ciphertext y=0, y=1, or y=-1
 - 3. RSA is malleable
 - Multiplying ciphertext by an integer without decrypting it can lead to readable plaintext
 - Could be used to change the amount of a transaction
 - Replace **y** with **s**^e * **y**

$$(s^e y)^d \equiv s^{ed} x^{ed} \equiv sx \mod n$$

PKCS#1 (v2.1) Padding

- Put 0, a "MaskedSeed", a Hash, 1, and more zeroes before the message M
- Total padded length = same as n
 - e.g. 1024 or 2048 bits



PKCS#1 (v2.1) Padding

- When decrypting, verify structure of the message
- This removes these weaknesses in RSA:

1. Deterministic

- 2. 1, 0, and -1
- 3. Malleable

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

Attacks and Countermeasures 1/3

There are three general attack families against RSA:

- 1. Protocol attacks
- 2. Mathematical attacks
- 3. Side-channel attacks

Protocol attacks

- Exploit the malleability of RSA, i.e., the property that a ciphertext can be transformed into another ciphertext which decrypts to a related plaintext – without knowing the private key
- Can be prevented by proper padding

Mathematical attacks

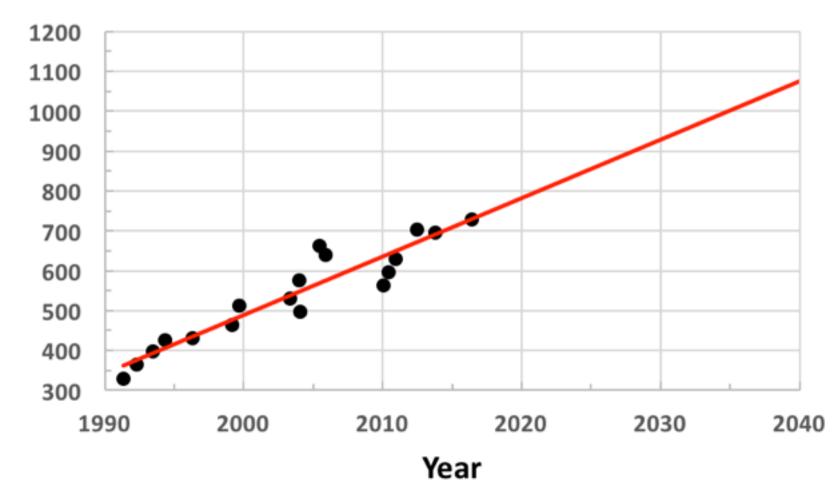
- The best known attack is factoring of n into p and q
 - Attacker can then decrypt the message

$$\begin{split} & \varPhi(n) = (p-1)(q-1) \\ & d^{-1} \equiv e \bmod \varPhi(n) \\ & x \equiv y^d \bmod n. \end{split}$$

- Can be prevented using a sufficiently large modulus n
- Current record: **729 bits** factored in 2016
 - Link Ch 7a

RSA Numbers

• A challenge to test security of RSA encryption

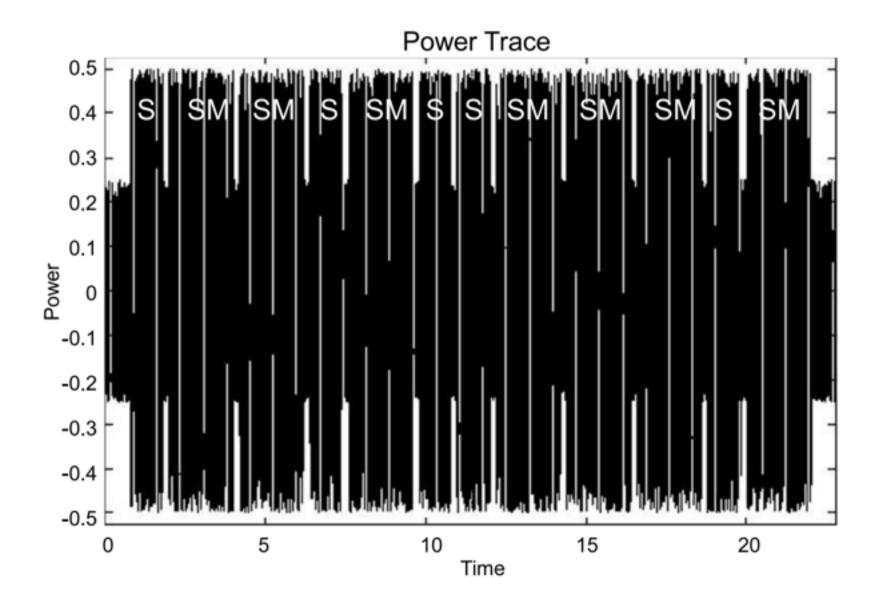


Factoring RSA Numbers

Bits

Side-Channel Attacks

- Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
- Ex: Power Consumption
 - Square and Multiply operations take a lot of power
 - Two bursts of power consumption: key bit is 1
 - One burst of power consumption: key bit is 0

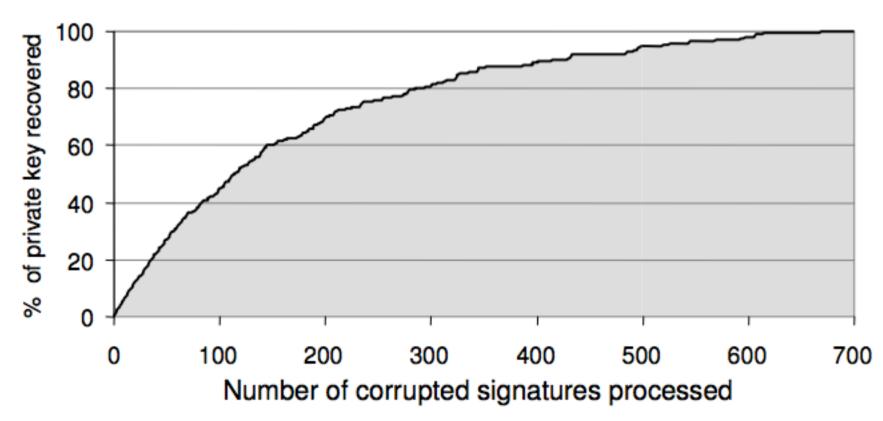


Power Consumption

- Countermeasure:
 - Perform a dummy multiplication operation for each 0 bit
 - So the power consumption remains the same

Fault-Injection Attacks

- Inducing faults in the device while decryption is executed can lead to a complete leakage of the private key
- In 2010, researchers extracted a 1024-bit key in 24 hours



• Links Ch 7b, 7c

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned

Lessons Learned

- RSA is the most widely used public-key cryptosystem
- RSA is mainly used for key transport and digital signatures
- The public key *e* can be a short integer, the private key *d* needs to have the full length of the modulus *n*
- RSA relies on the fact that it is hard to factorize *n*
- Currently 1024-bit cannot be factored, but progress in factorization could bring this into reach within 10-15 years. Hence, RSA with a 2048 or 3076 bit modulus should be used for long-term security
- A naïve implementation of RSA allows several attacks, and in practice RSA should be used together with padding

