Understanding Cryptography — A Textbook for

Students and Practitioners
by Christof Paar and JanPelzl

www.crypto-textbook.com

oter 6 — Introduction to
ic-Key Cryptography

er. November 18, 2010

These slides were prepared by Timo Kasper and Christof Paar
and modified by Sam Bowne -- revised 10-16-17

http://www.crypto-textbook.com/

Some legal stuff (sorry): Terms of Use

» The slides can used free of charge. All copyrights for the slides remain with
Christof Paar and Jan Pelzl.

 The title of the accompanying book “Understanding Cryptography” by
Springer and the author’s names must remain on each slide.

* |If the slides are modified, appropriate credits to the book authors and the
book title must remain within the slides.

* It is not permitted to reproduce parts or all of the slides in printed form
whatsoever without written consent by the authors.

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Topics

e Symmetric Cryptography Revisited

* Principles of Asymmetric Cryptography

e Practical Aspects of Public-Key Cryptography

e Important Public-Key Algorithms

o Essential Number Theory for Public-Key Algorithms (SKIP)

3 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Symmetric Cryptography Revisited

Symmetric Cryptography Revisited

Alice Bob

X | €eX Jadky) | x

® @ ®

* The same secret key K is used for encryption and decryption

* Encryption and Decryption are very similar (or even identical)
functions

5 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Symmetric Cryptography: Analogy

Alice Bob
%‘ > ’ &-‘
K K

Safe with a lock, only Alice and Bob have a copy of the key
* Alice encrypts - - locks message in the safe with her key

* Bob decrypts — - uses his copy of the key to open the safe

6 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Symmetric Cryptography: Shortcomings

* Symmetric algorithms, e.g., AES or 3DES, are very secure, fast & widespread but:
* Key distribution problem: The secret key must be transported securely
* Number of keys: In a network, each pair of users requires an individual key

n-(n—1)
)

—_—

n users in the network require keys, each user stores (n-1) keys

A B

Example:

6 users (nodes)

% =15 keys (edges)

E D

Chapter 6 of Understanding Cryptography by Christof Paar and Jan PelzI

Symmetric Cryptography: Shortcomings

* Alice or Bob can cheat each other, because they have identical
keys.

* Alice can sign a contract, and later deny it
* Bob could have faked the signature

* Doesn't provide non-repudiation

8 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Principles of Asymmetric Cryptography

Idea Behind Asymmetric Cryptography

New ldea:
Like a mailbox:

& Everyone can drop a letter

But: Only the owner has
the correct key to open the
box

1976: first publication of such an algorithm by Whitfield
Diffie and Martin Hellman,and also by Ralph Merkle.

10 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Asymmetric Cryptography: Analogy

Safe with public lock and private lock:

Alice Bob
deposit - unlock
= g—— &=
public key private key
(Kpub) (Kpr)

« Alice deposits (encrypts) a message with Bob's - not secret - public key K,

« Only Bob has the - secret - private key K, to retrieve (decrypt) the message

11 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Key Generation

* A message encrypted with a public key can be decrypted with
the corresponding private key

* The keys are related

* Each user must generate an individual key pair
* Publish public key where everyone can find it
* Protect private key so no one else gets it

12 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

One-Way Functions

* It must be easy to calculate the public key from the private key

* So keys can be generated
* But difficult to calculate the private key from the public key

* So attacker's can't get the private key

Definition 6.1.1 One-way function
A function f() is a one-way function if:

1. y= f(x) is computationally easy, and
2. x= f~Yy) is computationally infeasible.

13 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Commonly Used One-Way Functions

* Factorization
* Finding prime factors of a large number
* nis known; find p and ¢ n = pq

* Discrete logarithm

» Find an integer x satisfying this equation a*=b mod P
*a, b, and p are known

14 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Logarithms

* Logarithms to base 10
*log(100) = 2, because 102 =100
* log(1000) = 3, because 103 =100
* log(2) = 0.301
* Discrete logarithm
* Same thing, except on a ring and using only

integers a*=b mod P
* Find an integer x satisfying this equation
*a, b and p are known

15 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Practical Aspects of Public-Key
Cryptography

Basic Protocol for Public-Key Encryption

Alice

pubB

Bob

(Kpube KprB) =K

X

yzerubB(X)

Key Distribution Problem solved *

*at least for now; public keys need to be authenticated

18 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

deKprB(y)

Uses of Public-Key Cryptography

* Key Distribution
* Diffie-Hellman key exchange (DHKE), RSA
* Without a pre-shared secret (key)
* Nonrepudiation
 RSA, DSA or ECDSA (Elliptic Curve Digital Signature Algorithm)
* I[dentification
 Digital signatures
* Encryption
* RSA, ECC (Elliptic Curve Cryptography), or Elgamal

19 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Disadvantage of Public-Key Cryptography

* Computationally very intensive
* 1000 times slower than symmetric algorithms!

20 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

AES Encryption in Python

>>> from Crypto.Cipher import AES

>>> key = "aaaabbbbccccdddd"

>>> plain = '"qgqqqgrrrrsssstttt”

>>> cipher = AES.new(key)

>>> cipher.encrypt(plain).encode("hex")
'fébe769eedef9d9acl0ff9c9103f4f67"

RSA Encryption in Python

>>> from Crypto.PublicKey import RSA

>>> key = RSA.generate(2048)

>>> publickey = key.publickey()

>>> plain = 'encrypt this message'’

>>> ciphertext = publickey.encrypt(plain, 0)[0]

>>> print ciphertext.encode("hex")
536edad71ab9e526442f2b56e71fa5abfc603c88c2eac03d91f22babb6d@ealdbab2e8c8247df477c¢
5f15ce3¢ccc551227799d1f4f8943fa8bd278639bd90292¢5799d11f9f6601c94d88f10fc314317fb
1d75f55e20d1c5dd4e7448ff39018dab44091b6664610657516bfaf95a3f0e63e91941f1e08343421
f7¢cf8c35550ed951b240e4c42194b8bfc73ec3ccd5191f7¢c489¢28aaf799c78d6a695707423172¢c05
4edfd8f4c2ac0f5c25a996647b89581160983db8bdf2214fel31b0f3d558aeb7560e671062110224
fd21f18034eebb9c8773e6310180975539765d7235235a4467T037179e94e504b21f9ffac6679570a
958481238cdd3243723ed4722e549498

RSA Decryption in Python

>>> decrypted = key.decrypt(ciphertext)
>>> print decrypted
encrypt this message

Testing Speed in Python

import time
from Crypto.Cipher import AES
from Crypto.PublicKey import RSA

key = "aaaabbbbccccdddd"
plain = "ppppqgqqqrrrrssss"
cipher = AES.new(key)

start = time.time()
for i in range(1000000):
ciphertext = cipher.encrypt(plain)
print time.time() - start, " sec. for 1 million AES encryptions"

start = time.time()
for i in range(1000000):
plaintext = cipher.decrypt(ciphertext)
print time.time() - start, " sec. for 1 million AES decryptions"

Testing Speed in Python

start = time.time()
key = RSA.generate(2048)
print time.time() - start, " sec. for one RSA-2048 key generation"

publickey = key.publickey()
plain = 'encrypt this message’

start = time.time()
for i in range(4000):
ciphertext = publickey.encrypt(plain, 0)[0]
print time.time() - start, " sec. for 4000 RSA-2048 encryptions"

start = time.time()
for i in range(50):
decrypted = key.decrypt(ciphertext)
print time.time() - start, " sec. for 50 RSA-2048 decryptions"

Testing Speed in Python

Sams-MacBook-Pro-3:proj sambowne$ python timeTEST
0.57718205452 sec. for 1 million AES encryptions
0.56579208374 sec. for 1 million AES decryptions
0.908615112305 sec. for one RSA-2048 key generation
0.633729934692 sec. for 4000 RSA-2048 encryptions
0.455893993378 sec. for 50 RSA-2048 decryptions

Basic Key Transport Protocol 1/2

In practice: Hybrid systems, incorporating
asymmetric and symmetric algorithms

1. Key exchange (for symmetric schemes) and
digital signatures are performed with (slow)

asymmetric algorithms

2. Encryption of data is done using (fast)
symmetric ciphers, e.qg., block ciphers or

stream ciphers

26 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

27

Basic Key Transport Protocol 2/2

Example: Hybrid protocol with AES as the symmetric cipher

Alice Bob

K (KpubeKprB) =K R
) pubB
Choose random
symmetric key K
Y1 = erubB(K) Y1 R
|I K \= derB (y 1)
~ ——
N\
1 /
/ Ve
message X ,I ‘<o ~<
} y \
_ 2 \ 4
y2=AESK (X) > X =AES (V)

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Key Exchange

™ (asymmetric)

Data Encryption
> (symmetric)

—

Remaining Problem: Key Authenticity

* Alice wants to send a message to Bob
 Attacker can publish a fake public key for Bob
* Alice uses the fake key, so the attacker can read the message

e The current solution is digital certificates and Certificate
Authorities

28 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

Important Public-Key Algorithms

Public-Key Algorithm Families of Practical Relevance

Integer-Factorization Schemes Several public-key schemes are based on
the fact that it i1s difficult to factor large integers. The most prominent rep-
resentative of this algorithm family is RSA.

Discrete Logarithm Schemes There are several algorithms which are
based on what is known as the discrete logarithm problem in finite fields.
The most prominent examples include the Diffie-Hellman key exchange,
Elgamal encryption or the Digital Signature Algorithm (DSA).

Elliptic Curve (EC) Schemes A generalization of the discrete logarithm
algorithm are elliptic curve public-key schemes. The most popular exam-
ples include Elliptic Curve Diffie-Hellman key exchange (ECDH) and the
Elliptic Curve Digital Signature Algorithm (ECDSA).

Key Lengths and Security Levels

Symmetric

ECC

RSA, DL

Remark

64 Bit

128 Bit

~ 700 Bit

Only short term
security (a few
hours or days)

80 Bit

160 Bit

~ 1024 Bit

Medium security
(except attacks from big

governmental institutions
etc.)

128 Bit

256 Bit

~ 3072 Bit

Long term security
(without quantum
computers)

31

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

32

Quantum Computers

* The existence of quantum computers would
probably be the end for ECC, RSA & DL

* TEXTBOOK SAYS:

* Atleast 2-3 decades away, and some people
doubt that QC will ever exist

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelzl

NIST Recommendations from 2016

SP 800-57 Part 1 Rev. 4

Recommendation for Key Management, Part 1: General
f G+ ¥

Date Published: January 2016

Supersedes: SP 800-57 Part 1 Rev. 3 (July 2012);

33 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

NIST Recommendations from 2016

34

Table 2: Comparable strengths

Security
Strength

Symmetric
key
algorithms

FFC
(e.g., DSA, D-H)

IFC
(e.g., RSA)

ECC
(e.g., ECDSA)

L =2048
112 3TDEA k=2048 f=224-255
N=224
L=3072
128 AES-128 k=3072 f=256-383
N =256
L =7680
192 AES-192 k= 7680 f=384-511
N=384
L =15360
256 AES-256 k=15360 f=512+
N=3512

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

NIST Recommendations from 2016

Table 4: Security-strength time frames

- Through 2031 and
Security Strength 2030 Beyond
Disallowed
<112
Legacy-use
Disallowed
112 Acceptable
Legacy use
128 Acceptable Acceptable
192 Acceptable Acceptable
256 Acceptable Acceptable

35 Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

NIST Recommendations from 2016

36

LENGTH: 1024

0.150621891022 sec. for one RSA key generation
0.026349067688 sec. for 400 RSA encryptions
0.0133030414581 sec. for 5 RSA decryptions

LENGTH: 2048

1.00856208801 sec. for one RSA key generation
0.0688228607178 sec. for 400 RSA encryptions
0.0520279407501 sec. for 5 RSA decryptions

LENGTH: 3072

6.82681417465 sec. for one RSA key generation
0.123769044876 sec. for 400 RSA encryptions
0.134315013885 sec. for 5 RSA decryptions

LENGTH: 7680

46.0725779533 sec. for one RSA key generation
0.527646064758 sec. for 400 RSA encryptions
1.50095796585 sec. for 5 RSA decryptions

LENGTH: 15360

170.346763134 sec. for one RSA key generation
1.78894495964 sec. for 400 RSA encryptions
10.7478890419 sec. for 5 RSA decryptions

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

37

Lessons Learned

* Public-key algorithms have capabilities that symmetric ciphers don’t have,
in particular digital signature and key establishment functions.

* Public-key algorithms are computationally intensive (a nice way of saying
that they are slow), and hence are poorly suited for bulk data encryption.

* Only three families of public-key schemes are widely used. This is
considerably fewer than in the case of symmetric algorithms.

* The extended Euclidean algorithm allows us to compute modular inverses
quickly, which is important for almost all public-key schemes.

* Euler’s phi function gives us the number of elements smaller than an integer
n that are relatively prime to n. This is important for the RSA crypto scheme.

Chapter 6 of Understanding Cryptography by Christof Paar and Jan Pelz!

