Understanding Cryptography – A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 2 – Stream Ciphers

ver. October 29, 2009

These slides were prepared by Thomas Eisenbarth, Christof Paar and Jan Pelzl

Modified by Sam Bowne

(Spring

Some legal stuff (sorry): Terms of Use

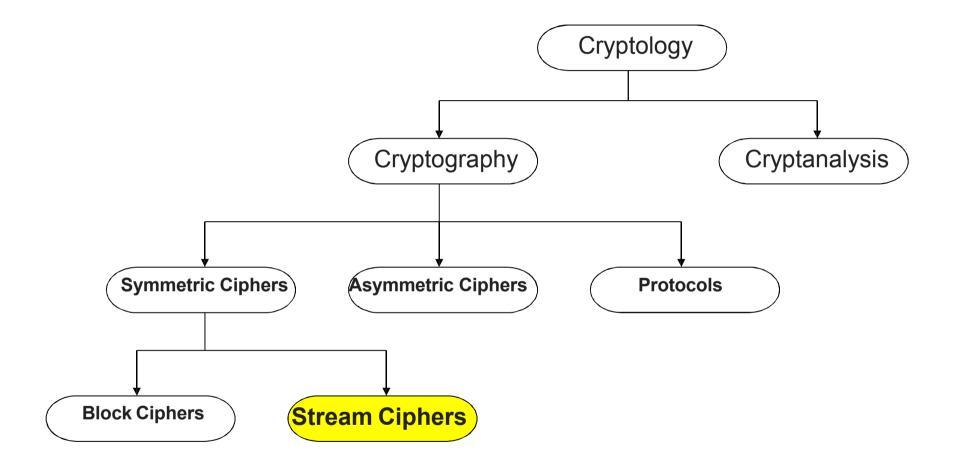
- The slides can used free of charge. All copyrights for the slides remain with the authors.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on eachslide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Contents of this Chapter

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

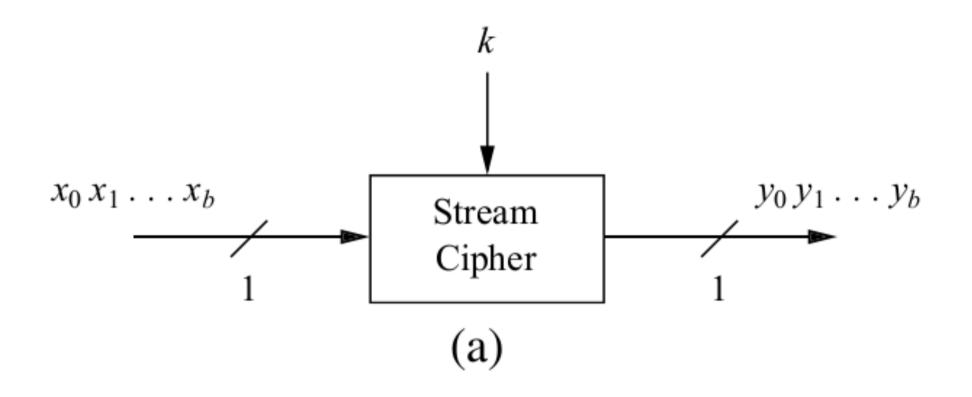
Intro to Stream Ciphers

Stream Ciphers in the Field of Cryptology

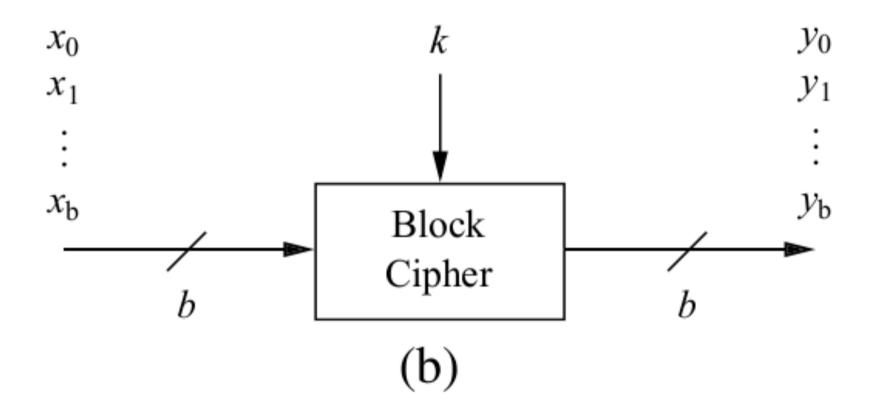


Stream Ciphers were invented in 1917 by Gilbert Vernam

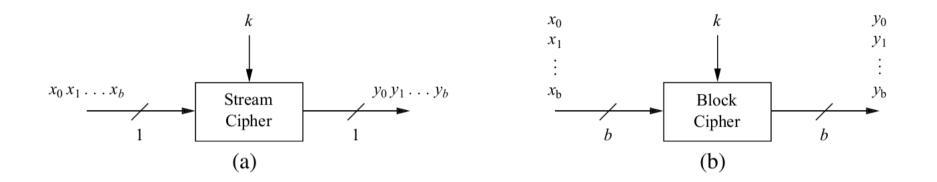
Stream Cipher



Block Cipher



Stream Cipher vs. Block Cipher

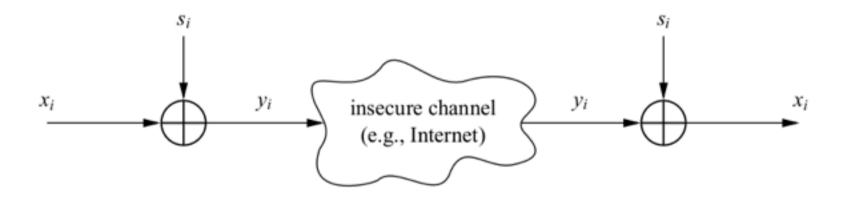


• Stream Ciphers

- Encrypt bits individually
- Usually small and fast
- Common in embedded devices (e.g., A5/1 for GSM phones)
- Block Ciphers:
 - Always encrypt a full block (several bits)
 - Are common for Internet applications

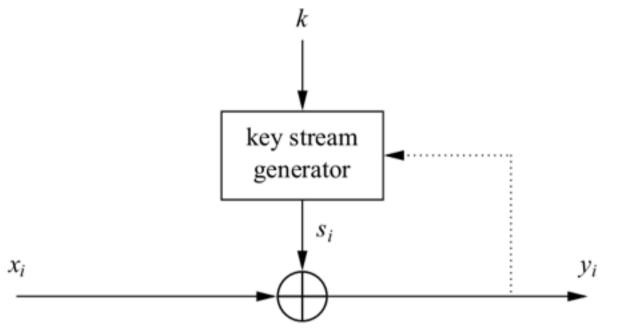
Encryption and Decryption with Stream Ciphers

Plaintext x_i , ciphertext y_i and key stream s_i consist of individual bits



- Encryption and decryption are simple additions modulo 2 (aka XOR)
- Encryption and decryption are the same functions
- Encryption: $y_i = e_{si}(x_i) = x_i + s_i \mod 2$ $x_i, y_i, s_i \in \{0, 1\}$
- **Decryption:** $x_i = e_{si}(y_i) = y_i + s_i \mod 2$

Synchronous vs. Asynchronous Stream Cipher



- Security of stream cipher depends entirely on the key stream s_i :
 - Should be **random**, i.e., $Pr(s_i = 0) = Pr(s_i = 1) = 0.5$
 - Must be **reproducible** by sender and receiver
- Synchronous Stream Cipher
 - Key stream depend only on the key (and possibly an initialization vector IV)
- Asynchronous Stream Ciphers
 - Key stream depends also on the ciphertext (dotted feedback enabled)

• Why is Modulo 2 Addition a Good Encryption Function?

- Modulo 2 addition is equivalent to XOR operation
- For perfectly random key stream s_i, each ciphertext output bit has a 50% chance to be 0 or 1

Good statistic property for ciphertext

• Inverting XOR is simple, since it is the same XOR operation

Xi	S _i	У і
0		0
0	1	1
1	0	1
1	1	0

Stream Cipher: Throughput

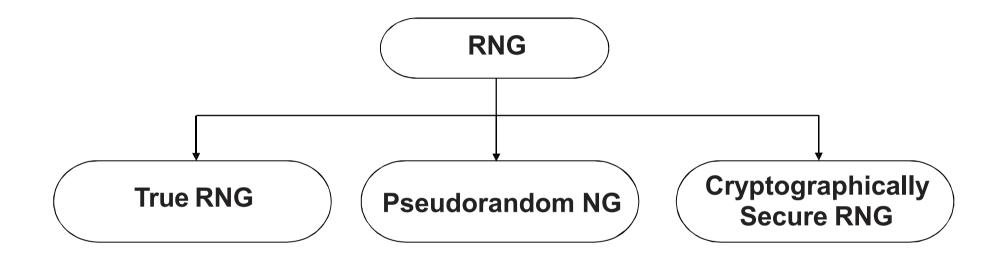
Performance comparison of symmetric ciphers (Pentium4):

Cipher	Key length	Mbit/s	
DES	56 36.95		
3DES	112	13.32	
AES	128	51.19	
RC4 (stream cipher)	(choosable)	211.34	

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005

Random Number Generators (RNGs)

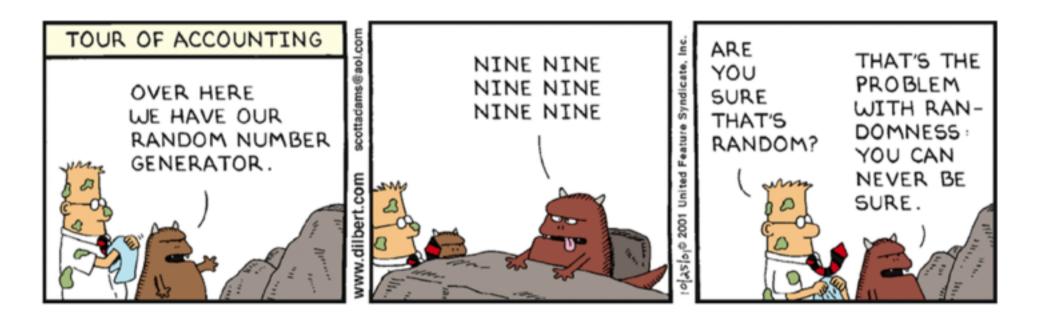
Random number generators (RNGs)



True Random Number Generators (TRNGs)

- Based on physical random processes: coin flipping, dice rolling, semiconductor noise, radioactive decay, mouse movement, clock jitter of digital circuits
- Output stream s_i should have good statistical properties:
 Pr(s_i = 0) = Pr(s_i = 1) = 50% (often achieved bypost-processing)
- Output can neither be predicted nor be reproduced

Typically used for generation of keys, nonces (used only-once values) and for many other purposes



Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Pseudorandom Number Generator (PRNG)

•Generate sequences from initial seed value

• Typically, output stream has good statistical properties

•Output can be reproduced and can be predicted

•Often computed in a recursive way:

 $s_0 = \text{seed}$ $s_{i+1} = f(s_i), \quad i = 0, 1, \dots$

Example: rand() function in ANSIC:

 $s_0 = 12345$ $s_{i+1} \equiv 1103515245 \, s_i + 12345 \mod 2^{31}, \ i = 0, 1, \dots$

Most PRNGs have bad cryptographic properties!

Cryptanalyzing a Simple PRNG

Simple PRNG: Linear Congruential Generator

 $S_0 = seed$ $S_{i+1} = A S_i + B \mod m, i = 0, 1, 2, ...$

Assume

- unknown A, B and S_0 as key
- Size of A, B and S_i to be 100 bit
- 300 bits of output are known, i.e. S_1 , S_2 and S_3

Solving

 $S_2 \equiv A S_1 + B \mod m$

 $S_3 \equiv A S_2 + B \mod m$

...directly reveals A and B. All S_i can be computed easily!

Bad cryptographic properties due to the linearity of most PRNGs

Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

• Special PRNG with additional property:

• Output must be **unpredictable**

More precisely: Given *n* consecutive bits of output s_i , the following output bits s_{n+1} cannot be predicted (in polynomial time).

- Needed in cryptography, in particular for stream ciphers
- Remark: There are almost no other applications that need unpredictability, whereas many, many (technical) systems need PRNGs.

One-Time Pad (OTP)

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

• A cryptosystem is unconditionally secure if it cannot be broken even with *infinite* computational resources

One-Time Pad

- A cryptosystem developed by Mauborgne that is based on Vernam's stream cipher:
- Properties:

Let the plaintext, ciphertext and key consist of individual bits x_i , y_i , $k_i \in \{0,1\}$.

Encryption: $e_{k_i}(x_i) = x_i \oplus k_i$ Decryption: $d_{k_i}(y_i) = y_i \oplus k_i$

OTP is unconditionally secure if and only if the key k_{i} is used once!

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

 $y_0 \equiv x_0 + s_0 \mod 2$ $y_1 \equiv x_1 + s_1 \mod 2$

Every equation is a linear equation with two unknowns

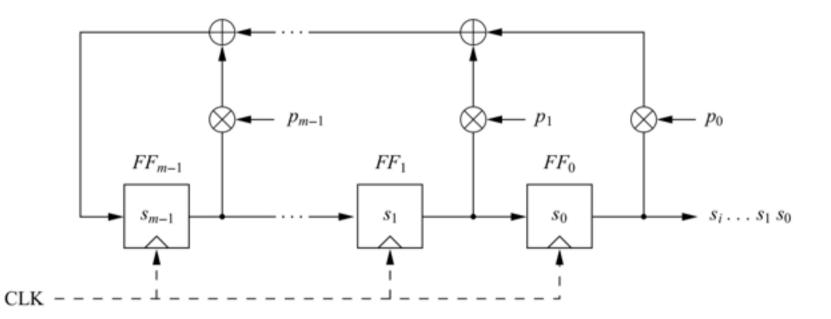
for every y_i are $x_i = 0$ and $x_i = 1$ equiprobable! This is true iff k_0 , k_1 , ... are independent, i.e., all k_i have to be generated truly random

It can be shown that this systems can *provably* not be solved.

Disadvantage: For almost all applications the OTP is **impractical** since the key must be as long as the message! (Imagine you have to encrypt a 1GByte email attachment.)

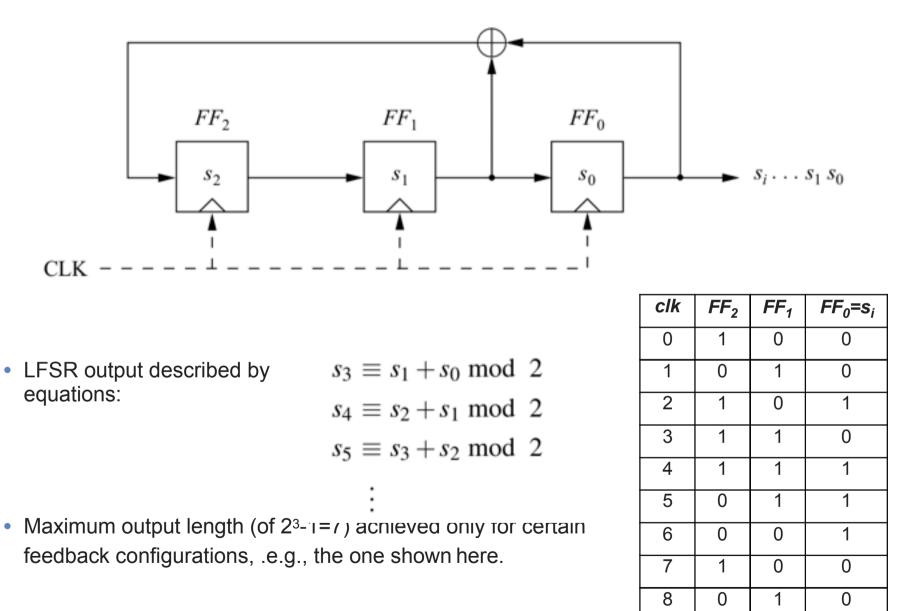
Linear Feedback Shift Registers (LFSRs)

Linear Feedback Shift Registers (LFSRs)



- Concatenated *flip-flops (FF*), i.e., a shift register together with a feedback path
- Feedback computes fresh input by XOR of certain state bits
- *Degree m* given by number of storage elements
- If p_i = 1, the feedback connection is present ("closed switch), otherwise there is not feedback from this flip-flop ("open switch")
- Output sequence repeats periodically
- Maximum output length: 2^{*m*}-1

Linear Feedback Shift Registers (LFSRs): Example with m=3



Security of LFSRs

LFSRs typically described by polynomials:

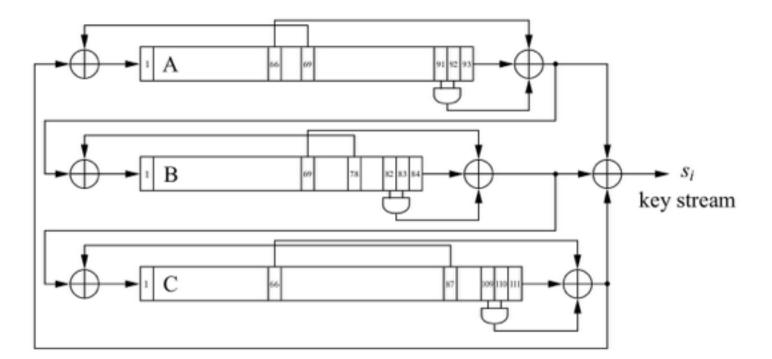
$$P(x) = x^{m} + p_{m-1}x^{m-1} + \ldots + p_{1}x + p_{0}$$

- Single LFSRs generate highly predictable output
- If 2*m* output bits of an LFSR of degree *m* are known, the feedback coefficients *p_i* of the LFSR can be found by solving a system of linear equations*
- Because of this many stream ciphers use **combinations** of LFSRs

*See Chapter 2 of *Understanding Cryptography* for further details.

Trivium: a modern stream cipher

• A Modern Stream Cipher - Trivium



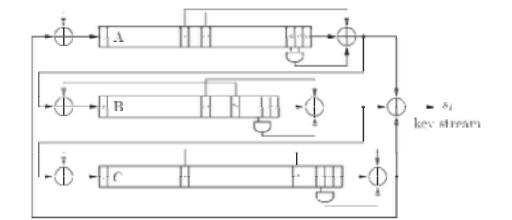
- Three nonlinear LFSRs (NLFSR) of length 93, 84, 111
- XOR-Sum of all three NLFSR outputs generates key stream s_i
- Small in Hardware:
 - Total register count: 288
 - Non-linearity: 3 AND-Gates
 - 7 XOR-Gates (4 with three inputs)

Trivium

Initialization:

- Load 80-bit IV into A
- Load 80-bit key into B
- Set c_{109} , c_{110} , $c_{111} = 1$, all other bits 0

Warm-Up:



• Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

• XOR-Sum of all three NLFSR outputs generates key stream s_i

Design can be parallelized to produce up to 64 bits of output per clock cycle

	Register length	Feedback bit	Feedforward bit	AND inputs
Α	93	69	66	91, 92
В	84	78	69	82, 83
С	111	87	66	109, 110

Lessons Learned

- Stream ciphers are less popular than block ciphers in most domains such as Internet security. There are exceptions, for instance, the popular stream cipher RC4.
- Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for implementation than block ciphers, and they are attractive for use in constrained environments such as cell phones.
- The requirements for a *cryptographically secure pseudorandom number generator* are far more demanding than the requirements for pseudorandom number generators used in other applications such as testing or simulation
- The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical for most applications because the key length has to equal the message length.
- Single LFSRs make poor stream ciphers despite their good statistical properties. However, careful combinations of several LFSR can yield strong ciphers.

