
Understanding Cryptography
by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 13 – Key Establishment
ver. Jan 7, 2010

These slides were prepared by Christof Paar and Jan Pelzl
and modified by Sam Bowne

Updated 12-4-17

http://www.crypto-textbook.com/

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl2

▪ The slides can used free of charge. All copyrights for the slides remain with
Christof Paar and Jan Pelzl.

▪ The title of the accompanying book “Understanding Cryptography” by Springer
and the author’s names must remain on each slide.

▪ If the slides are modified, appropriate credits to the book authors and the book
title must remain within the slides.

▪ It is not permitted to reproduce parts or all of the slides in printed form
whatsoever without written consent by the authors.

Some legal stuff (sorry): Terms of Use

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl3

Contents of this Chapter

13.1 Introduction
13.2 Key Establishment Using Symmetric-Key Techniques
13.3 Key Establishment Using Asymmetric Techniques

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl4

13.1

Introduction

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can
control what the key value will be.

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl6

Key Freshness

It is often desirable to frequently change the key in a
cryptographic system. Reasons for key freshness
include:
−If a key is exposed (e.g., through hackers), there is

limited damage if the key is changed often
−Some cryptographic attacks become more difficult

if only a limited amount of ciphertext was generated
under one key
−If an attacker wants to recover long pieces of

ciphertext, he has to recover several keys which
makes attacks harder

Key Derivation
▪In order to achieve key freshness,

we need to generate new keys
frequently.

▪Rather than performing a full key
establishment every time (which is
costly in terms of computation and/
or communication), we can derive
multiple session keys kses from a
given key kAB.

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl7

▪The key kAB is fed into a key derivation function
together with a nonce r (number used only once).

▪Every different value for r yields a different session
key

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Derivation

▪The key derivation function is a
computationally simple function, e.g.,
a block cipher or a hash function
▪ Example for a basic protocol:

Alice Bob

derive session key
Kses= ekAB (r)

8

generate nonce r

derive session key
Kses= ekAB (r)

r

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

The n2 Key Distribution Problem

▪ n users. Every user wants to communicate securely with every of the
other n-1 users. Every pair of users needs an individual key pair.

9

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

The n2 Key Distribution Problem

Shortcomings

▪There are n (n-1) ≈ n2 keys in the system

▪There are n (n-1)/2 key pairs

▪If a new user Esther joins the network,
new keys kXE have to be transported via
secure channels (!) to each of the
existing users

⇒ Only works for small networks which
are relatively static

10

Example: mid-size company with 750 employees

▪750 x 749 = 561,750 keys must be distributed securely

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl11

13.2

Key Establishment Using  
Symmetric-Key Techniques

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Establishment with Key Distribution Center

▪Key Distribution Center (KDC) = Central party, trusted by all users

▪KDC shares a key encryption key (KEK) with each user

▪Principle: KDC sends session keys to users which are encrypted with
KEKs

derive session key
Kses= eKA (yA)

Alice
KEK: kA

Bob
KEK: kB

yA yB

derive session key
Kses= eKB (yB)

y
Ksesx= e-1 (y)

message y
y= eKses (x)

KDC
KEKs: kA , kB

Generate session key kses

yA = eKA (kses)

yB = eKB (kses)

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl13

Key Establishment with Key Distribution Center

▪ Advantages over previous approach:
−Only n long-term key pairs are in the system
−If a new user is added, a secure key is only needed
between the user and the KDC (the other users are
not affected)
−Scales well to moderately sized networks

▪ Kerberos (a popular authentication and key distribution
protocol) is based on KDCs

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Confirmation Attack (MITM)

derive session key
Kses= eKA (yA)

Alice
KEK: kA

Bob
KEK: kB

yA yB

derive session key
Kses= eKB (yB)

KDC
KEKs: kA , kB

Generate session key kses

yA = eKA (kses)

yB = eKB (kses)

•MITM attacker sends Alice a fake key

• (And a fake request to the KDC)

• She can't detect this because there is no key confirmation

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Kerberos

• Provides key
confirmation and
user
authentication
• Alice sends a random

nonce rA to the server
• Server encrypts it with

their joint KEK kA
• Alice verifies that the

decrypted nonce
matches

•Resists MITM
attacks

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Kerberos

• Session keys have
a limited lifetime
• Clocks on all devices

must be synchronized
within a few minutes

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl17

Remaining Problems with Symmetric-Key Distribution

▪No Perfect Forward Secrecy: If the KEKs are compromised, an
attacker can decrypt past messages if he stored the corresponding
ciphertext

▪Single point of failure: The KDC stores all KEKs. If an attacker
gets access to this database, all past traffic can be decrypted.

▪Communication bottleneck: The KDC is involved in every
communication in the entire network (can be countered by giving
the session keys a long life time)

▪Key confirmation attack (MITM)

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl18

13.3

Key Establishment
Using Asymmetric Techniques

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Recall: Diffie–Hellman Key Exchange (DHKE)

Bob

Choose random private key
kprA = a ∈ {1, 2,…, p-1}

19

Choose random private key
kprB = b ∈ {1, 2,…, p-1}

Compute public key
kpubA = A = αa mod p

Compute public key
kpubB = B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

▪Widely used in practice

▪ If the parameters are chosen carefully (especially a prime p > 21024),
the DHKE is secure against passive (i.e., listen-only) attacks

▪However: If the attacker can actively intervene in the communciation,
the man-in-the-middle attack becomes possible

Public parameters α, p

▪ The man-in-the-middle-attack is not restricted to DHKE; it is
applicable to any public-key scheme, e.g. RSA encryption.
ECDSA digital signature, etc. etc.

▪Q: What is the underlying problem that makes the MIM attack
possible?

▪A: The public keys are not authenticated
▪When Alice receives a public key which is allegedly from

Bob, she has no way of knowing whether it is in fact his.
(After all, a key consists of innocent bits; it does not smell like
Bob‘s perfume or anything like that)

▪Even though public keys can be sent over insecure
channels (lacking confidentiality), they require
authenticated channels (with authentication and integrity)

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Man-in-the-Middle Attack

Certificates

▪In order to authenticate public keys (and thus, prevent the MIM attack), all
public keys are digitally signed by a central trusted authority.

▪Such a construction is called certificate
certificate = public key + ID(user) + digital signature over public key and ID

▪In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice))

▪Certificates bind the identity of user to her public key

▪The trusted authority that issues the certificate is referred to as certifying
authority (CA)

▪"Issuing certificates“ means in particular that the CA computes the signature
sigKCA(kpub) using its (super secret!) private key kCA

▪The party who receives a certificate, e.g., Bob, verifies Alice‘s public key
using the public key of the CA

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

Diffie–Hellman Key Exchange (DHKE) with Certificates

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

kprA = a

kpubA = A

Cert(Alice) = ((A, IDA), sigKCA (A,IDA))

Cert(Alice)

Cert(Bob)

Bob
kprB = b

kpubB = B = αb mod p

Cert(Bob) = ((B, IDB), sigKCA (B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

CA

22

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Certificates

▪Note that verification requires the public key of the CA for verKpub,CA

▪ In principle, an attacker could run a MITM attack when kpub,CA is being
distributed

⇒ The public CA keys must also be distributed via an authenticated channel!

▪Q: So, have we gained anything?

After all, we try to protect a public key (e.g., a DH key) by using yet another
public-key scheme (digital signature for the certificate)?

▪A: YES! The difference from before (e.g., DHKE without certificates) is that
we only need to distribute the public CA key once, often at the set-up
time of the system

▪Example: Most web browsers are shipped with the public keys of many
CAs. The "authenticated channel“ is formed by the (hopefully) correct
distribution of the original browser software.

Public-Key Infrastructure

▪ Definition

▪The entire system: Certificate Authorities (CAs)
together with the necessary support mechanisms

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Certificates in the Real World

▪X.509 certificates contain much more information
than just a public key and a signature.

▪Signature at the bottom is computed over all other
fields in the certifcate (after hashing of all those
fields).

▪Every certificate uses two public-key
schemes

1. The public key that actually is protected by
the signature ("Subject‘s Public Key“ on the
right). e.g. public Diffie-Hellman key

2. The digital signature algorithm used by the
CA to sign the certificate data.

25

Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl26

Remaining Issues with PKIs

1. Users communicate which other whose certificates are issued by different
CAs
−This requires cross-certification of CAs, e.g.. CA1 certifies the public-

key of CA2. If Alice trusts "her“ CA1, cross-certification ensures that she
also trusts CA2. This is called a "chain of trust“ and it is said that "trust
is delegated“.

2. Certificate Revocation Lists (CRLs)
−Another real-world problem is that certificates must be revoked, e.g.,

if a smart card with certificate is lost or if a user leaves an
organization. This system is problematic in practice because not all
CAs maintain fast, reliable CRL servers, and browsers often fail-
open.

