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13.1 

Introduction
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Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can 
control what the key value will be.
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Key Freshness 

It is often desirable to frequently change the key in a 
cryptographic  system.  Reasons for key freshness 
include: 
−If a key is exposed (e.g., through hackers), there is 

limited damage if the key is changed often 
−Some cryptographic attacks become more difficult 

if only a limited amount of ciphertext was generated 
under one key 
−If an attacker wants to recover long pieces of 

ciphertext, he has to recover several keys which 
makes attacks harder



Key Derivation 
▪In order to achieve key freshness, 

we need to generate new keys 
frequently. 

▪Rather than performing a full key 
establishment every time (which is 
costly in  terms of computation and/
or communication), we can derive 
multiple session  keys kses from a 
given key kAB.
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▪The key kAB is fed into a key derivation function 
together with a nonce r  (number used only once). 

▪Every different value for r yields a different session 
key
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Key Derivation 

▪The key derivation function is a 
computationally  simple function, e.g., 
a block cipher or a hash  function 
▪ Example for a basic protocol:

Alice Bob

derive session key 
Kses= ekAB (r)

8

generate nonce r

derive session key 
Kses= ekAB (r)

r
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The n2  Key Distribution Problem 

▪ n users. Every user wants to communicate  securely with every of the 
other n-1 users.  Every pair of users needs an individual key pair.

9
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The n2  Key Distribution Problem 

Shortcomings 

▪There are n (n-1) ≈ n2  keys in the system 

▪There are n (n-1)/2 key pairs 

▪If a new user Esther joins the network, 
new keys kXE have to be transported via 
secure channels (!) to each of the 
existing users 

⇒ Only works for small networks which 
are relatively static

10

Example: mid-size company with 750 employees 

▪750 x 749 = 561,750 keys must be distributed securely
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13.2 

Key Establishment Using  
Symmetric-Key Techniques
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Key Establishment with Key Distribution Center 

▪Key Distribution Center (KDC) = Central party, trusted by all users 

▪KDC shares a key encryption key (KEK) with each user 

▪Principle: KDC sends session keys to users which are encrypted with 
KEKs

derive session key 
Kses= eKA (yA)

Alice 
KEK: kA

Bob 
KEK: kB

yA yB

derive session key 
Kses= eKB (yB)

y
Ksesx= e-1 (y)

message y  
y= eKses (x)

KDC 
KEKs: kA  , kB 

Generate session key kses   

yA = eKA (kses) 

yB = eKB (kses)
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Key Establishment with Key Distribution Center 

▪ Advantages over previous approach: 
−Only n long-term key pairs are in the system 
−If a new user is added, a secure key is only needed 
between the  user and the KDC (the other users are 
not affected) 
−Scales well to moderately sized networks 

▪ Kerberos (a popular authentication and key distribution 
protocol) is based on KDCs
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Key Confirmation Attack (MITM) 

derive session key 
Kses= eKA (yA)

Alice 
KEK: kA

Bob 
KEK: kB

yA yB

derive session key 
Kses= eKB (yB)

KDC 
KEKs: kA  , kB 

Generate session key kses   

yA = eKA (kses) 

yB = eKB (kses)

•MITM attacker sends Alice a fake key 

• (And a fake request to the KDC) 

• She can't detect this because there is no key confirmation
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Kerberos 

• Provides key 
confirmation  and 
user 
authentication 
• Alice sends a random 

nonce rA to the server 
• Server encrypts it with 

their joint KEK kA 
• Alice verifies that the 

decrypted nonce 
matches 

•Resists MITM 
attacks
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Kerberos 

• Session keys have 
a limited lifetime 
• Clocks on all devices 

must be synchronized 
within a few minutes
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Remaining Problems with Symmetric-Key Distribution 

▪No Perfect Forward Secrecy: If the KEKs are compromised, an 
attacker can decrypt past messages if he stored the corresponding 
ciphertext 

▪Single point of failure: The KDC stores all KEKs. If an attacker 
gets access to this database, all past traffic can be decrypted. 

▪Communication bottleneck: The KDC is involved in every  
communication in the entire network (can be countered by giving 
the session keys a long life time) 

▪Key confirmation attack (MITM)
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13.3 

Key Establishment  
Using Asymmetric Techniques
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Alice

Recall: Diffie–Hellman Key Exchange  (DHKE)

Bob

Choose random private key 
kprA = a ∈ {1, 2,…, p-1}

19

Choose random private key 
kprB = b ∈ {1, 2,…, p-1}

Compute public key 
kpubA = A = αa mod p

Compute public key 
kpubB = B = αb  mod p

Compute common secret 
kAB = Ba  = (αa)b mod p

Compute common secret 
kAB = Ab = (αb)a mod p

A

B

▪Widely used in practice 

▪ If the parameters are chosen carefully (especially a prime p > 21024),  
the DHKE is secure against passive (i.e., listen-only) attacks 

▪However: If the attacker can actively intervene in the communciation,  
the man-in-the-middle attack becomes possible

Public parameters α, p



▪ The man-in-the-middle-attack is not restricted to DHKE; it is 
applicable to any public-key scheme, e.g. RSA encryption.  
ECDSA digital signature, etc. etc. 

▪Q: What is the underlying problem that makes the MIM attack 
possible? 

▪A: The public keys are not authenticated 
▪When Alice receives a public key which is  allegedly from 

Bob, she has no way of knowing whether it is in fact his. 
(After all, a key consists of innocent bits; it does not smell like 
Bob‘s perfume or anything like that) 

▪Even though public keys can be sent over insecure 
channels (lacking confidentiality), they require 
authenticated channels (with authentication and integrity) 
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Man-in-the-Middle  Attack



Certificates 

▪In order to authenticate public keys (and thus, prevent the MIM attack), all 
public keys are digitally signed by a central trusted authority. 

▪Such a construction is called certificate 
certificate = public key + ID(user) + digital signature over public key and ID 

▪In its most basic form, a certificate for the key kpub of user Alice is: 

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice) ) 

▪Certificates bind the identity of user to her public key 

▪The trusted authority that issues the certificate is referred to as certifying 
authority (CA) 

▪"Issuing certificates“ means in particular that the CA computes the signature 
sigKCA(kpub)  using its (super secret!) private key kCA 

▪The party who receives a certificate, e.g., Bob, verifies Alice‘s public key 
using the public  key of the CA
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Alice

Diffie–Hellman Key Exchange (DHKE) with Certificates

verify certificate 
verKpub,CA (Cert(Bob)) 

if verification is correct:  
Compute common secret  
kAB = Ba  = (αa)b mod p

kprA = a  

kpubA = A 

Cert(Alice)  = ((A, IDA), sigKCA (A,IDA)) 

Cert(Alice)

Cert(Bob)

Bob 
kprB = b 

kpubB = B = αb mod p 

Cert(Bob)  = ((B, IDB), sigKCA (B,IDB))

verify certificate 
verKpub,CA (Cert(Alice)) 

if verification is correct:  
Compute common secret  
kAB = Ab = (αb)a mod p

CA

22



Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Certificates

▪Note that verification requires the public key of the CA for verKpub,CA 

▪ In principle, an attacker could run a MITM attack when kpub,CA is being 
distributed 

⇒ The public CA keys must also be distributed via an authenticated channel! 

▪Q: So, have we gained anything? 

After all, we try to protect a public key (e.g., a DH key) by using yet another  
public-key scheme (digital signature for the certificate)? 

▪A: YES! The difference from before (e.g., DHKE without certificates) is that  
we only need to distribute the public CA key once, often at the set-up 
time of the system 

▪Example: Most web browsers are shipped with the public keys of many  
CAs. The "authenticated channel“ is formed by the (hopefully) correct  
distribution of the original browser software.



Public-Key Infrastructure

▪ Definition 

▪The entire system: Certificate Authorities (CAs) 
together with the necessary support mechanisms
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Certificates in the Real World 

▪X.509 certificates contain much more information 
than just a public key and a signature. 

▪Signature at the bottom is computed over all other 
fields in the certifcate (after hashing of all those 
fields). 

▪Every certificate uses two public-key 
schemes 

1. The public key that actually is protected by 
the signature  ("Subject‘s Public Key“ on the 
right). e.g. public Diffie-Hellman key 

2. The digital signature algorithm used by the 
CA to sign the certificate data.

25
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Remaining Issues with PKIs 

1. Users communicate which other whose certificates are issued by different  
CAs 
−This requires cross-certification of CAs, e.g.. CA1 certifies the public-

key of CA2. If Alice trusts "her“ CA1, cross-certification ensures that she 
also trusts CA2. This is called a "chain of trust“ and it is said that "trust 
is delegated“. 

2. Certificate Revocation Lists (CRLs) 
−Another real-world problem is that certificates must be revoked, e.g., 

if a  smart card with certificate is lost or if a user leaves an 
organization. This system is problematic in practice because not all 
CAs maintain fast, reliable CRL servers, and browsers often fail-
open.




