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Some legal stuff (sorry): Terms of Use

• The slides can used free of charge. All copyrights for the slides remain with  
Christof Paar and Jan Pelzl. 

• The title of the accompanying book “Understanding Cryptography” by  
Springer and the author’s names must remain on each slide. 

• If the slides are modified, appropriate credits to the book authors and the  
book title must remain within the slides. 

• It is not permitted to reproduce parts or all of the slides in printed form  
whatsoever without written consent by the authors.
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Contents of this Chapter

• General rules of cryptography 

• Substitution Cipher 

• Modular arithmetic 

• Caesar cipher 

• Affine Cipher



General Rules of Cryptography
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■ Classification of the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols

Block Ciphers Stream Ciphers
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■ Some Basic Facts

• Ancient Crypto: Early signs of encryption in Eqypt in ca. 2000 B.C. 
Letter-based encryption schemes (e.g., Caesar cipher) popular ever since. 

• Symmetric ciphers: All encryption schemes from ancient times until 1976 were  
symmetric ones. 

• Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly  
proposed by Diffie, Hellman and Merkle. 

• Hybrid Schemes: The majority of today‘s protocols are hybrid schemes, i.e., the  
use both 

• symmteric ciphers (e.g., for encryption and message authentication) and 

• asymmetric ciphers (e.g., for key exchange and digital signature).
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■ Communication Without Cryptography
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■ Symmetric Cryptography 

• Alternative names: private-key, single-key or secret-key cryptography.

8

• x is the. plaintext 

• y is the ciphertext 

• K is the key 

• Set of all keys {K1, K2, ...,Kn} is the key space
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■ Symmetric Cryptography

• Encryption equation 

• Decryption equation
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y = eK(x)  

x = dK(y)

• Important: The key must be transmitted via a secure channel between Alice and Bob. 
• The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi  

Protected Access (WPA) protocol or a human  courier. 

• However, the system is only secure if an attacker does not learn the key K! 
➤ The problem of secure communication is reduced to secure transmission and  

storage of the key K.

• Encryption and decryption are inverse operations if the same key K is used on both  
sides: 

dK(y) = dK(eK(x)) = x
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■ Why do we need Cryptanalysis? 

• There is no mathematical proof of security for any practial cipher 

• The only way to have assurance that a cipher is secure is to try to break it (and fail) ! 

Kerckhoff‘s Principle is paramount in modern cryptography: 

A cryptosystem should be secure even if the attacker (Oscar)  knows 
all details about the system, with the exception of the secret  key.
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• In order to achieve Kerckhoff‘s Principle in practice: 
Only use widely known ciphers that have been cryptanalyzed for several years  
by good cryptographers! (Understanding Cryptography only treats such ciphers) 

• Remark: It is tempting to assume that a cipher is „more secure“ if its details are kept  
secret. However, history has shown time and again that secret ciphers can almost  
always been broken once they have been reversed engineered. (Example: Content  
Scrambling System (CSS) for DVD content protection.)
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■ Cryptanalysis: Attacking Cryptosystems

• Classical Attacks 

• Mathematical Analysis 

• Brute-Force Attack 
• Implementation Attack: Try to extract key through reverese engineering or  

power measurement, e.g., for a banking smart card. 

• Social Engineering: E.g., trick a user into giving up her password

11
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dK(y0)  = x0 

• How many keys do we need ?

■ Brute-Force Attack (or Exhaustive Key Search) against Symmetric Ciphers 

• Treats the cipher as a black box 

• Requires (at least) 1 plaintext-ciphertext pair (x0, y0) 

• Check all possible keys until condition is fulfilled:

Key length 
(bits)

Key space Security life time 
(assuming brute-force as best possible attack)

64 264 Short term (few days or less)

128 2128
Long-term (several decades in the absence 
of  quantum computers)

256 2256
Long-term (also resistant against quantum  
computers – note that QC do not exist at 
the  moment and might never exist)
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?

Important: An adversary only needs to succeed with one attack. Thus, a long key space  
does not help if other attacks (e.g., social engineering) are possible..



Substution Cipher
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■ Substitution Cipher 

• Historical cipher 

• Great tool for understanding brute-force vs. analytical attacks 

• Encrypts letters rather than bits (like all ciphers until after WW II) 

Idea: replace each plaintext letter by a fixed other letter.

Plaintext Ciphertext
A → k

B → d
C → w

....
for instance, ABBA would be encrypted as kddk

hr bnnb hcc

• Example (ciphertext): 
iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz 

hwwhbsqvqbre hwq vhlq

• How secure is the Substitution Cipher? Let‘s look at attacks…



Chapter 1 of Understanding Cryptography by Christof Paar and Jan Pelzl15

■ Attacks against the Substitution Cipher 

1.  Attack: Exhaustive Key Search (Brute-Force Attack) 
• Simply try every possible subsititution table until an intelligent plaintext appears  

(note that each substitution table is a key).. 

• How many substitution tables (= keys) are there? 

26 x 25 x … x 3 x 2 x 1 = 26!  ≈ 288 

Search through 288  keys is completely infeasible with today‘s computers! 
(cf.  earlier table on key lengths) 

• Q: Can we now conclude that the substitution cipher is secure since a brute-  
forece attack is not feasible? 

• A: No! We have to protect against all possible attacks…
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E T A O I N S H R D L C U  M W F G Y P B V K J X Q Z

0.00 00

2.00 00

4.00 00

6.00 00

8.00 00

10.0000

12.0000

14.0000

■ 2. Attack: Letter Frequency Analysis (Brute-Force Attack) 

• Letters have very different frequencies in the English language 

• Moreover: the frequency of plaintext letters is preserved in the ciphertext. 
• For instance, E is the most common letter in English; almost 13% of all letters in a  

typical English text are E. 

• The next most common one is T with about 9%. 

Letter frequencies in English

16

Letters

Fr
eq

ue
nc

yi
n%
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■ Breaking the Substitution Cipher with Letter Frequency Attack 

• Let‘s retun to our example and identify the most frequent letter: 
iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc  

hwwhbsqvqbre hwq vhlq 

• We replace the ciphertext letter q by  E and obtain: 
iE ifcc vEEr fb rdE vfllcE na rdE cfjwhwz hr bnnb hcc  

hwwhbsEvEbre hwE vhlE 

• By further guessing based on the frequency of the remaining letters we obtain the  
plaintext: 

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL  
ARRANGEMENTS ARE MADE
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■ Breaking the Substitution Cipher with Letter Frequency Attack 

• In practice, not only frequencies of individual letters can be used for an attack,  
but also the frequency of letter pairs (i.e., „th“ is very common in English), letter  
triples, etc. 

• cf. Problem 1.1 in Understanding Cryptography for a longer ciphertext you can  
try to break!

Important lesson: Even though the substitution cipher has a sufficiently large key  
space of appr. 288, it can easily be defeated with analytical methods. This is an  
excellent example that an encryption scheme must withstand all types of  
attacks.





Modular Arithmetic
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■ Short Introduction to Modular Arithmetic

Why do we need to study modular arithmetic? 

• Extremely important for asymmetric cryptography (RSA, elliptic curves etc.) 
• Some historical ciphers can be elegantly described with modular arithmetic (cf.  

Caesar and affine cipher later on).
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■ Short Introduction to Modular Arithmetic 

Generally speaking, most cryptosytems are based on sets of numbers that are 
1. discrete (sets with integers are particularly useful) 
2. finite (i.e., if we only compute with a finiely many numbers)

22

Seems too abstract? --- Let‘s look at a finite set with discrete numbers we are quite familiar  
with: a clock.

Interestingly, even though the numbers are incremented every hour we never leave the set of  
integers: 

1, 2, 3,  … 11, 12, 1, 2, 3,  … 11, 12, 1, 2, 3,  …:



■ Short Introduction to Modular Arithmetic 
• We develop now an arithmetic system which allows us to compute in finite sets of  

integers like the 12 integers we find on a clock (1,2,3,  … ,12). 

• It is crucial to have an operation which „keeps the numbers within limits“, i.e., after  
addition and multiplication they should never leave the set (i.e., never larger than 12). 

Definition: Modulus Operation 
Let a, r, m be integers and m > 0. We write 

a ≡ r mod m 

if (r-a) is divisable by m. 

• “m” is called the modulus 

• “r” is called the remainder 

Examples for modular reduction.
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• Let a= 12 and  m= 9 : 

• Let a= 37 and m= 9: 

• Let a= -7 and m= 9:

12 ≡ 3 mod 9 

34 ≡ 7 mod 9 

-7 ≡ 2 mod 9

(you should check whether the condition „m divides (r-a)“holds in each of the 3 cases)

23
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■ Properties of Modular Arithmetic (1)

• The remainder is not unique 
It is somewhat surprising that for every given modulus m and number a, there are (infinitely)  
many valid remainders. 
Example:

• 12 ≡ 3 mod 9 

• 12 ≡ 21 mod 9 

• 12 ≡ -6 mod 9

→ 3 is a valid remainder since 9 divides (3-12) 

→ 21 is a valid remainder since 9 divides (21-12) 

→ -6 is a valid remainder since 9 divides (-6-12)
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→  r = 3

Remark: This is just a convention. Algorithmically we are free to choose any other  valid  
remainder to compute our crypto functions.

■ Properties of Modular Arithmetic (2) 

• Which remainder do we choose? 
By convention, we usually agree on the smallest positive integer r as remainder. This  
integer can be computed as

remainder 

where 0 ≤ r ≤ m-1
quotient 

a = q  m + r 

• Example: a=12 and  m= 9 

12 = 1 x 9 + 3

25
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•
First, note that rather than performing a division, we prefer to multiply by the inverse. Ex: 

b / a≡ b x a-1 mod m 

The inverse a-1 of a number a is defined such that: 

a a-1 ≡ 1 mod m 

Ex: What is 5 / 7 mod 9 ? 

The inverse of 7 mod 9 is 4 since 7 x 4 ≡ 28 ≡ 1 mod 9, hence: 

5 / 7 ≡ 5 x 4 = 20 ≡ 2 mod 9

■ Properties of Modular Arithmetic (3) 

How do we perform modular division?

• How is the inverse computed?

The inverse of a number a mod m only exists if and only if: 

gcd (a, m) = 1 

(note that in the example above gcd(5, 9) = 1, so that the inverse of 5 exists modulo 9) 
For now, the best way of computing the inverse is to use exhaustive search. In Chapter 6 of  

Understanding Cryptography we will learn the powerful Euclidean Algorithm which  
actually computes an inverse for a given number and modulus.
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■ Properties of Modular Arithmetic (4) 

• Modular reduction can be performed at any point during a calculation 
Let’s look first at an example. We want to compute 38 mod 7 (note that exponentiation is  
extremely important in public-key cryptography). 

1. Approach: Exponentiation followed by modular reduction 
38 = 6561 ≡ 2 mod 7 

Note that we have the intermediate result 6561 even though we know that the final result  
can’t be larger than 6. 

2. Approach: Exponentiation with intermediate modular reduction 
38 = 34 34  = 81 x 81 

At this point we reduce the intermediate results 81 modulo 7: 

38 = 81 x 81 ≡ 4 x 4 mod 7 

4 x 4 = 16 ≡ 2 mod 7 
Note that we can perform all these multiplications without pocket calculator, whereas  
mentally computing 38 = 6561 is a bit challenging for most of us. 

General rule: For most algorithms it is advantageous to reduce  
intermediate results as soon as possible.

27



■ An Algebraic View on Modulo Arithmetic: The Ring Zm (1) 
We can view modular arithmetic in terms of sets and operations in the set. By doing  
arithmetic modulo m  we obtain the integer ring Zm .with the following properties: 

• Closure: We can add and multiply any two numbers and the result is always in the 
ring. 

• Addition and multiplication are associative, i.e., for all a,b,c 
ε Zm  a + (b + c) = (a + b) + c 
a × (b × c) = (a × b) × c 

and addition is commutative: a + b = b + a 
• The distributive law holds: a×(b+c) = (a×b)+(a×c) for all  a,b,c ε Zm 

• There is the neutral element 0 with respect to addition, i.e., for all a 
ε Zm  a + 0 ≡ a mod m 

• For all a ε Zm, there is always an additive inverse element –a such 

that  a + (-a) ≡ 0 mod m 

• There is the neutral element 1 with respect to multiplication, i.e., for all 
a ε Zm  a × 1 ≡ a mod m 

• The multiplicative inverse a-1 

a × a-1 ≡ 1 mod m 
exists only for some, but not for all, elements in Zm.
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■ An Algebraic View on Modulo Arithmetic: The Ring Zm (2) 

Roughly speaking, a ring is a structure in which we can always add, subtract and  
multiply, but we can only divide by certain elements (namely by those for which a  
multiplicative inverse exists). 

• We recall from above that an element a ε Zm has a multiplicative inverse 

only if:  gcd (a, m) = 1 

We say that a is coprime or relatively prime to m.
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• Ex: We consider the ring Z9 = {0,1,2,3,4,5,6,7,8} 
The elements 0, 3, and 6 do not have inverses since they are not coprime to 9.  
The inverses of the other elements 1, 2, 4, 5, 7, and 8 are: 

1-1 ≡ 1 mod 9 
5-1 ≡ 2 mod 9

2-1 ≡ 5 mod 9 
7-1 ≡ 4 mod 9

4-1 ≡ 7 mod 9 
8-1 ≡ 8 mod 9

29



Caesar Cipher
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■ Shift (or Caesar) Cipher (1) 

•Ancient cipher, allegedly used by Julius Caesar 

• Replaces each plaintext letter by another one. 
•Replacement rule is very simple: Take letter that follows after k positions in the alphabet  

Needs mapping from letters → numbers:

• Example for k = 7 

Plaintext = ATTACK = 0, 19, 19, 0, 2, 10 

Ciphertext = haahr = 7, 0, 0, 7, 17 
Note that the letters ”wrap around” at the end of the alphabet, which can be mathematically  

be expressed as reduction modulo 26, e.g., 19 + 7 = 26 ≡ 0 mod 26

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25
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• Q; Is the shift cipher secure? 

• A: No! several attacks are possible, including: 

• Exhaustive key search (key space is only 26!) 

• Letter frequency analysis, similar to attack against substitution cipher

■ Shift (or Caesar) Cipher (2) 

• Elegant mathematical description of the cipher. 

Let k, x, y ε {0,1, …, 25}

32

• Encryption: 

• Decryption:

y = ek(x) ≡ x + k mod 26  

x = dk(x) ≡ y - k mod 26



Affine Cipher
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• Since the inverse of a is needed for inversion, we can only use values for a for which: 
gcd(a, 26) = 1  

There are 12 values for a that fulfill this condition. 

• From this follows that the key space is only 12 x 26 = 312 (cf. Sec 1.4 in Understanding  
Cryptography) 

• Again, several attacks are possible, including: 
• Exhaustive key search and letter frequency analysis, similar to the attack against  

the substitution cipher

■ Affine Cipher (1) 

• Extension of the shift cipher: rather than just adding the key to the plaintext, we also  
multiply by the key 

• We use for this a key consisting of two parts: k = (a, b) 

Let k, x, y ε {0,1, …, 25}

34

• Encryption: 

• Decryption:

y = ek(x) ≡ a x + b mod 26 

x = dk(x) ≡ a-1( y – b) mod 26
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■ Lessons Learned 

• Never ever develop your own crypto algorithm unless you have a team of experienced  
cryptanalysts checking your design. 

• Do not use unproven crypto algorithms or unproven protocols. 
• Attackers always look for the weakest point of a cryptosystem. For instance, a large key  

space by itself is no guarantee for a cipher being secure; the cipher might still be vulnerable  
against analytical attacks. 

• Key lengths for symmetric algorithms in order to thwart exhaustive key-search attacks: 

• 64 bit: insecure except for data with extremely short-term value 
• 128 bit: long-term security of several decades, unless quantum computers become  

available (quantum computers do not  exist and perhaps never will) 

• 256 bit: as above, but probably secure against attacks by  quantum computers. 
• Modular arithmetic is a tool for expressing historical encryption schemes, such as the affine  

cipher, in a mathematically elegant way.




