CNIT 141
Cryptography for Computer Networks

Serious
Cryptography

A Practical Introduction
to Modem Encryption

';1 ¥ ‘.\
o A

oVl : o ! -8
ol i |F
¥ Wl -
\\"':{A‘l' ' L
:'\?é‘_‘} '
; - ; p
1 ova

lomwad by Rtew | &

(€

7. Keyed Hashing

Updated 10-16-2023

Topics

e Message Authentication Codes (MACs)
e Pseudorandom Functions (PRFs)
e Creating Keyed Hashes from Unkeyed Hashes

e Creating Keyed Hashes from Block Ciphers:
CMAC

e Dedicated MAC Designs
e How Things Can Go Wrong

Keyed Hashing

e Anyone can calculate the SHA hash of a
message

e No secret value involved

e Keyed hashing forms the basis for two
algorithms

e Message Authentication Code (MAC)
e Pseudorandom Function (PRF)

Message Authentication
Codes (MACs)

MACs

e A MAC protects a message's integrity and
authenticity withatag T

o T = MAC(K, M)

e Verifying the MAC proves both that the
message wasn't altered, and that it came from
the sender holding the key

MACSs in Secure
Communication

e MACs are used In
e [PSec, SSH, and TLS

e 3G & 4G telephony encrypt packets but don't
use a MAC

e An attacker can modify the packets
e Causing static on the line

Forgery

e Attacker shouldn't be able to create a tag
without knowing the key

e Such a M, T pair is called a forgery

e A system is unforgeable if forgeries are
impossible to find

Known-Message Attack

e An attacker passively collects messages and
tags

e Tries to find the key
e This is a very weak attack

Chosen-Message Attacks

e An attacker can choose messages that get
authenticated

e And observe the authentication tags
e The standard model to test MAC algorithms

Replay Attacks

e MACs are not safe from replay attacks

e [o detect them, protocols include a message
number in each message

e Areplayed message will have an out-of-
order message number

Pseudorandom Functions
(PRFs)

PRFs

e Use a secret key to return PRF(K, M)
e Output looks random
e Key Derivation schemes use PRFs

e To generate cryptographic keys from a
master key or password

e |dentification schemes use PRFs

e To generate a response from a random
challenge

Uses of PRFs

e 4G telephony uses PRFs
e To authenticate a SIM card

e To generate the encryption key and MAC
used during a phone call

e TLS uses a PRF

e To generate key material from a master
secret and a session-specific random value

PRF Security

¢ Has no pattern, looks random

e [ndistinguishable from random bits

e Fundamentally stronger than MACs
e MACs are secure if they can't be forged
e But may not appear random

Creating Keyed Hashes
from Unkeyed Hashes

The Secret-Prefix
Construction

e Prepend key to the message, and return
e Hash(K || M)
e May be vulnerable to length-extension attacks

e Calculating Hash(K || M1 || M2) from
Hash(K || M1)

e SHA-1 & SHA-2 are vulnerable to this, but not
SHA-3

Insecurity with Different
Key Lengths

e No way to tell key from message
e [f Kis 123abc and M is def00
e [f Kis 123a and M is bcdef00
e Result is Hash(123abcdef00)

e To fix this, BLAKEZ2 and SHA-3 include a
keyed mode

e Another fix is to include the key's length in
the hash: Hash(L || K'|| M)

Secret-Suffix Construction

e Tag is Hash(M || K)

¢ Prevents length-extension attack
e |f you know Hash(M1 || K)
e You can calculate Hash(M+ || K || M2)
e But not Hash(M1 || M2 || K)

Secret-Suffix Construction

e But if there's a hash collision
e Hash(M1) = Hash(M>)
e The tags can collide too
e Hash(M+ || K) = Hash(M: || K)

HMAC Construction

e More secure than secret prefix or secret suffix
e Used by IPSec, SSH, and TLS

e Specifed in NIST's FIPS 198-6 standard

e And RFC 2104

HMAC Construction

Hash((K &

D opad) Hash((K &

> ipad) M))

e Key K is usually shorter than block size

e Uses opad (outer padding) and ipad (inner

padding)

® opad is a series of O0x5c bytes as long as the

block size

® jpad is a series of 0x36 bytes as long as the

block size

Specifying Hash Function

e Must specify, as in HMAC-SHA256

K & ipad M
H, —| Compress H,” —p| Compress
K @ opad
H,—|Compress [—gm H, —pm| Compress |—pm HMAC-H(K, M)

Figure 7-1: The HMAC hash-based MAC construction

A Generic Attack Against
Hash-Based MACs

e Can forge a HMAC tag from a hash collision
e Hash(K || M1) = Hash(K || M2)

e Requires 212 calculations (digest has n bits)
e Hash(K || M1 || M3) = Hash(K || Mz || M3)

e \Works on all MACs based on an iterated hash
function

A Generic Attack Against
Hash-Based MACs

e Infeasible for n larger than 128 bits

K M, M, (one or more blocks)

H,—={ Hashing... |—=H,—1 Compress | g H,—p| Hashing... = MAC(K, M, I M,)

N o Y

Hy— Hashing... —»H]—’ Compress

Figure 7-2: The principle of the generic forgery attack on hash-based MACs

Creating Keyed Hashes
from Block Ciphers: CMAC

Block Ciphers

e The compression function in many hash
functions is built on a block cipher

e Ex: HMAC-SHA-256
e Next two slides from Chapter 6

Compression-Based Hash Functions:
the Merkle-Damgard Construction

e Used in MD4, MD5, SHA-1, and SHA-2
e Also RIPEMD and Whirlpool

* Ho is an initial value (V)

e M4, My, ... are blocks of message data

e The final H is the output

M M,

i —
H0_> Compress H] —ap| Compress H2_>, o

Figure 6-4: The Merkle-Damgard construction using a compression function called Compress

Building Compression Functions:
The Davies-Meyer Construction

e Uses a block cipher to build a compression
function

e Use message blocks as keys

e The XOR feedback makes it secure against
decryption M

CMAC and Block Ciphers

e The compression function in many hash
functions is built on a block cipher

e Ex: HMAC-SHA-256

e CMAC uses only a block cipher, such as AES
e | ess popular than HMAC
e Used in IKE (part of IPSec)

CBC-MAC

e CMAC was designed in 2005

e As an improved version of CBC-MAC
e CBC-MAC:

e Encrypt M with Iv=0

e Discard all but the last ciphertext block

Plaintext Plaintext Plaintext
) D [[) D (| L) I 10 [0)]) [0 [0 [) [D T ())

V=0 |
(I IIIIIIIT]}— - >

Ke block cipher Ke block cipher Ke block cipher
Y encryption Y encryption Y encryption
| |
6 ; l
] 0 [0 0) D [) I 0 V0) O O L] [) 1 G)] (0)
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Breaking CBC-MAC

e Suppose attacker knows the tags T1 and T2
e For two single-block messages M1 and M2

M M-
[0 [5 |5 (0 [[E) 1) 5 1 (0) (1) o i)
IV=O |V=O
|)\ 1 L0 I I I | 00 0 0 0 O T)
Key block cipher Key block cipher
encryption encryption
[2Re =] mp] njes puyn] nge ju) =) [0 (10 I O T
T+ LP:

Breaking CBC-MAC

e T2 is also the tag of this message:

e Mi|| (M2TH)
e For two single-block messages M1 and Mz
e Attacker can forge a message and tag

M M2” Ty
101 L [0 [()) [g o i g o)
V=0
CIITTTITITTITITITTI T 7]— -
Key block cipher Key blockcupher
encryption encryption
|
6 l

[IS | 9 [I [[S 0 A D D O IS 5 I (] [A 0 [I T A D) O

T+ T2

Fixing CBC-MAC

e CMAC
e Uses key K to create K1 and Kz

e Encrypts last block with a different key

Plaintext Plaintext Plaintext
I) 1 [0 I [([0 I] [I) 0 5 [) [[(O

V=0
[(IIIIIIIIIIIIII] — > -

block cipher block cipher . block cipher
K encryption K encryption K1 encryption
| |
6 & l
) I ([S [[0] 0 I 0 D [0 D6) 6] 0 [D [D () [(S
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

CMAC

e |f the message fills the last block exactly
e Uses Kand K1

| e
E, E, E,
[1]

Figure 7-3: The CMAC block cipher-based MAC construction when the message is a
sequence of integral blocks

CMAC

e |f padding is needed
e Uses K and Kz

] M, M,II100...00

Lot

- Tl T

Figure 7-4: The CMAC block cipher-based MAC construction when the last block of the

Dedicated MAC Designs

Dedicated Design

e The preceding systems use hash functions
and block ciphers to build PRFs

e Convenient but inefficient

e Could be made faster by designing algorithms
specifically for MAC use case

Poly1305

e Designed in 2005
e Optimized to run fast on modern CPUs
e Used by Google for HTTPS and OpenSSH

Universal Hash Functions

e UHF is much weaker than a cryptographic
hash function

e But much faster
e Not collision-resistant

e Uses a secret key K
e UH(K, W)

Universal Hash Functions

e Only one security requirement
e For two messages My and M:
e Negligible probability that
e UH(K, M7) = UH(K, M>)
® For arandom K
e Doesn't need to be pseudorandom

Universal Hash Functions

UH(R, K, M) =R + MK + MzK? + MzK> + ... + M, K" mod p

e \Neakness:
e K can only be used once

e Otherwise an attacker can solve two equations
like this and gain information about the key

Wegman-Carter MACs

MAC(K-, K, N, M) = UH(K,, M) + PRF(K,, N)

e Builds a MAC from a universal hash function
and a PRF

e Using two keys K1 and Kz

e And a nonce N that is unique for each key,
K>

Wegman-Carter MACs

e Secure If

e UH is a secure universal hash.
e PRF is a secure PRF.
e Each nonce N is used only once for each key K,.

e The output values of UH and PRF are long enough to
ensure high enough security.

Poly1305-AES

Poly 1305(K,, M) + AES(K,, N) mod 2128

¢ Much faster than HMAC-based MACSs or even CMACs
¢ Only computes one block of AES
e Poly1305 is a universal hash

¢ Remaining processing runs in parallel with simple
arithmetic operations

e Secure as long as AES is

SipHash

e Poly1305 is optimized for long messages
e Requires nonce, which must not be repeated
e For small messages, Poly1305 is overkill

e SipHash is best for short messages
¢ [ess than 128 bytes

SipHash

e Designed to resist DoS attacks on hash tables
e Uses XORs, additions, and word rotations

K,
CHL

K, M, M,
l [—l—l u I_l_ K
O O O O O e e O
SHS SH S S g SIS
2| |2 | |2 SliI2] 2] |8 H
C,—& oo alda oo daoalda
2 (¥p) (7p) v (Vs (7p) (s) (¥p)
C3 T—T— —T— —T—
K K M, M ff

2

Figure 7-5: SipHash-2-4 processing a 15-byte message (a block, M1, of 8 bytes and a
block, Mo, of 7 bytes, plus 1 byte of padding)

How Things Can Go
Wrong

Timing Attacks on MAC
Verficiation

e Side-channel attacks
® Target the implementation

e Not the algorithm

_ _ def compare mac(x, y, n):
® This code will return

faster if the first byte
IS Incorrect

for 1 in range(n):
if x[1] !'= y[1]:
return False
® Solution: write return True

constant-time code

When Sponges Leak

e |f attacker gets the internal state
e Through a side-channel attack

e Permutation-based algorithms fall
e Allowing forgery

e Applies to SHA-3 and SipHash

e But not compression-function-based MACs
e |ike HMAC-SHA-256 and BLAKE?Z2

