
CNIT 141

Cryptography for Computer Networks

7. Keyed Hashing

Updated 10-16-2023

Topics

• Message Authentication Codes (MACs)

• Pseudorandom Functions (PRFs)

• Creating Keyed Hashes from Unkeyed Hashes

• Creating Keyed Hashes from Block Ciphers:
CMAC

• Dedicated MAC Designs

• How Things Can Go Wrong

Keyed Hashing

• Anyone can calculate the SHA hash of a
message

• No secret value involved

• Keyed hashing forms the basis for two
algorithms

• Message Authentication Code (MAC)

• Pseudorandom Function (PRF)

Message Authentication
Codes (MACs)

MACs

• A MAC protects a message's integrity and
authenticity with a tag T

• T = MAC(K, M)

• Verifying the MAC proves both that the
message wasn't altered, and that it came from
the sender holding the key

MACs in Secure
Communication

• MACs are used in

• IPSec, SSH, and TLS

• 3G & 4G telephony encrypt packets but don't
use a MAC

• An attacker can modify the packets

• Causing static on the line

Forgery

• Attacker shouldn't be able to create a tag
without knowing the key

• Such a M, T pair is called a forgery

• A system is unforgeable if forgeries are
impossible to find

Known-Message Attack

• An attacker passively collects messages and
tags

• Tries to find the key

• This is a very weak attack

Chosen-Message Attacks

• An attacker can choose messages that get
authenticated

• And observe the authentication tags

• The standard model to test MAC algorithms

Replay Attacks

• MACs are not safe from replay attacks

• To detect them, protocols include a message
number in each message

• A replayed message will have an out-of-
order message number

Pseudorandom Functions
(PRFs)

PRFs
• Use a secret key to return PRF(K, M)

• Output looks random

• Key Derivation schemes use PRFs

• To generate cryptographic keys from a
master key or password

• Identification schemes use PRFs

• To generate a response from a random
challenge

Uses of PRFs

• 4G telephony uses PRFs

• To authenticate a SIM card

• To generate the encryption key and MAC
used during a phone call

• TLS uses a PRF

• To generate key material from a master
secret and a session-specific random value

PRF Security

• Has no pattern, looks random

• Indistinguishable from random bits

• Fundamentally stronger than MACs

• MACs are secure if they can't be forged

• But may not appear random

Creating Keyed Hashes
from Unkeyed Hashes

The Secret-Prefix
Construction

• Prepend key to the message, and return

• Hash(K || M)

• May be vulnerable to length-extension attacks

• Calculating Hash(K || M1 || M2) from  
Hash(K || M1)

• SHA-1 & SHA-2 are vulnerable to this, but not
SHA-3

Insecurity with Different
Key Lengths

• No way to tell key from message

• If K is 123abc and M is def00

• If K is 123a and M is bcdef00

• Result is Hash(123abcdef00)

• To fix this, BLAKE2 and SHA-3 include a
keyed mode

• Another fix is to include the key's length in
the hash: Hash(L || K || M)

Secret-Suffix Construction

• Tag is Hash(M || K)

• Prevents length-extension attack

• If you know Hash(M1 || K)

• You can calculate Hash(M1 || K || M2)

• But not Hash(M1 || M2 || K)

Secret-Suffix Construction

• But if there's a hash collision

• Hash(M1) = Hash(M2)

• The tags can collide too

• Hash(M1 || K) = Hash(M2 || K)

HMAC Construction

• More secure than secret prefix or secret suffix

• Used by IPSec, SSH, and TLS

• Specifed in NIST's FIPS 198-6 standard

• And RFC 2104

HMAC Construction

• Key K is usually shorter than block size

• Uses opad (outer padding) and ipad (inner
padding)

• opad is a series of 0x5c bytes as long as the
block size

• ipad is a series of 0x36 bytes as long as the
block size

Specifying Hash Function

• Must specify, as in HMAC-SHA256

A Generic Attack Against
Hash-Based MACs

• Can forge a HMAC tag from a hash collision

• Hash(K || M1) = Hash(K || M2)

• Requires 2n/2 calculations (digest has n bits)

• Hash(K || M1 || M3) = Hash(K || M2 || M3)

• Works on all MACs based on an iterated hash
function

A Generic Attack Against
Hash-Based MACs

• Infeasible for n larger than 128 bits

7a

Creating Keyed Hashes
from Block Ciphers: CMAC

Block Ciphers

• The compression function in many hash
functions is built on a block cipher

• Ex: HMAC-SHA-256

• Next two slides from Chapter 6

Compression-Based Hash Functions:
the Merkle-Damgard Construction

• Used in MD4, MD5, SHA-1, and SHA-2

• Also RIPEMD and Whirlpool

• H0 is an initial value (IV)

• M1, M2, ... are blocks of message data

• The final H is the output

Building Compression Functions:
The Davies-Meyer Construction

• Uses a block cipher to build a compression
function

• Use message blocks as keys

• The XOR feedback makes it secure against
decryption

CMAC and Block Ciphers

• The compression function in many hash
functions is built on a block cipher

• Ex: HMAC-SHA-256

• CMAC uses only a block cipher, such as AES

• Less popular than HMAC

• Used in IKE (part of IPSec)

CBC-MAC
• CMAC was designed in 2005

• As an improved version of CBC-MAC

• CBC-MAC:

• Encrypt M with IV=0

• Discard all but the last ciphertext block

IV = 0

Breaking CBC-MAC
• Suppose attacker knows the tags T1 and T2

• For two single-block messages M1 and M2

M1

T1

IV = 0

M2

T2

IV = 0

Breaking CBC-MAC
• T2 is also the tag of this message:

• M1 || (M2 ^ T1)

• For two single-block messages M1 and M2

• Attacker can forge a message and tag

M1 M2 ^ T1

T1 T2

IV = 0

Fixing CBC-MAC
• CMAC

• Uses key K to create K1 and K2

• Encrypts last block with a different key

 K K K1

IV = 0

CMAC

• If the message fills the last block exactly

• Uses K and K1

CMAC

• If padding is needed

• Uses K and K2

Dedicated MAC Designs

Dedicated Design

• The preceding systems use hash functions
and block ciphers to build PRFs

• Convenient but inefficient

• Could be made faster by designing algorithms
specifically for MAC use case

Poly1305

• Designed in 2005

• Optimized to run fast on modern CPUs

• Used by Google for HTTPS and OpenSSH

Universal Hash Functions

• UHF is much weaker than a cryptographic
hash function

• But much faster

• Not collision-resistant

• Uses a secret key K

• UH(K, M)

• Only one security requirement

• For two messages M1 and M2

• Negligible probability that

• UH(K, M1) = UH(K, M2)

• For a random K

• Doesn't need to be pseudorandom

Universal Hash Functions

• Weakness:

• K can only be used once

• Otherwise an attacker can solve two equations
like this and gain information about the key

Universal Hash Functions

Wegman-Carter MACs

• Builds a MAC from a universal hash function
and a PRF

• Using two keys K1 and K2

• And a nonce N that is unique for each key,
K2

• Secure if

Wegman-Carter MACs

Poly1305-AES

• Much faster than HMAC-based MACSs or even CMACs

• Only computes one block of AES

• Poly1305 is a universal hash

• Remaining processing runs in parallel with simple
arithmetic operations

• Secure as long as AES is

SipHash

• Poly1305 is optimized for long messages

• Requires nonce, which must not be repeated

• For small messages, Poly1305 is overkill

• SipHash is best for short messages

• Less than 128 bytes

• Designed to resist DoS attacks on hash tables

• Uses XORs, additions, and word rotations

SipHash

How Things Can Go
Wrong

Timing Attacks on MAC
Verficiation

• Side-channel attacks

• Target the implementation

• Not the algorithm

• This code will return  
faster if the first byte  
is incorrect

• Solution: write  
constant-time code

When Sponges Leak

• If attacker gets the internal state

• Through a side-channel attack

• Permutation-based algorithms fail

• Allowing forgery

• Applies to SHA-3 and SipHash

• But not compression-function-based MACs

• Like HMAC-SHA-256 and BLAKE2

7b

