
CNIT 141
Cryptography for Computer Networks

6. Hash Functions

Updated 10-2-2023

Topics

• Secure Hash Functions

• Building Hash Functions

• The SHA Family

• BLAKE2

• How Things Can Go Wrong

Use Cases of Hash
Functions

• Digital signatures

• Public-key encryption

• Message authentication

• Integrity verification

• Password storage

Fingerprinting

• Hash function creates a fixed-length "fingerprint"

• From input of any length

• Not encryption

• No key; cannot be reversed

Non-Cryptographic Hash
Functions

• Provide no security; easily fooled by crafted
input

• Used in hash tables

• To make table lookups faster

• Also used to detect accidental errors

• Ex: CRC (Cyclic Redundancy Check)

• Used at layer 2 by Ethernet and Wi-Fi

Secure Hash Functions

Digital Signature
• Most common use case for hashing

• Message M hashed, then the hash is signed

• Hash is smaller so the signature computation is
faster

• But the hash function must be secure

Unpredictability

• Two different inputs must always have different
hashes

• Changing one bit in the input makes the hash
totally different

Non-Uniqueness
• Consider an input message 1024 bits long

• And a hash 256 bits long

• There are 21024 different messages

• But only are 2256 different hashes

• So many different messages have the same
hash

One-Wayness

• Hashing cannot be reversed

• An attacker cannot find M from H

• In principle, always true

• Many different messages have the same
hash

Preimage Resistance

• An attacker given H cannot find any M with
that hash

• This is preimage resistance

• Also called first preimage resistance

The Cost of Preimages
• Attacker hashes many messages

• Hunting for a match

• Will take 2N guesses for hash of length N bits

• For n = 256, that's forever

Second Preimage

• Given M1 and H1

• Attacker tries to find another message M2

• That hashes to the same H

• Essentially the same as first preimage resistance

• Unless the hash function has a certain type of
mathematical defect

• Like length extension attacks

Collision Resistance

• Every hash function has collisions

• Two messages with the same hash

• Because there are more possible messages
than hashes

• Pigeonhole principle

• If you have 10 holes and 11 pigeons, at least
one hole contains more than one pigeon

Collision Resistance

• Collisions should be hard to find

• In practice, impossible

Birthday Attack
• Get each person in a group to say the month

and day they were born

• With 23 people, the probability of two having
the same birthday is 51%

Finding Collisions

• If you search for collisions

• And have enough RAM to remember each
hash you calculate

• It only takes 2N/2 hashes to find a collision

• N is the number of bits in the hash

Naive Birthday Attack

• Requires 2N/2 calculations to create the list

• And 2N/2 units of storage to hold it

• Sorting the list takes even more calculations

MD5 Example
(Not in book)

Preimage Attack

• MD5 is 128 bits long

• Given an MD5 hash, can we find an input with
that hash value?

• Calculating every possible hash (nearly) would
require 2128 calculations

• But we don't need to store them: we just
compare each one with the target

• How hard is that?

72 Bit Brute-Force
• RSA Security made several challenges to test

brute-force attacks (on the RC5 symmetric cipher)

• Distributed.net has been attacking these
challenges since 1997

• Cracked a 56-bit key in 250 days in 1997

• Cracked a 64-bit key in 5 years in 2002

• 72-bit key attack is in progress

• So far they've tested 5.6% of the keyspace

• It will take 127 years to test all keys

• Link Ch 6g

• Not really--the Bitcoin hash rate is 293 hashes per year

• So apparently a 93-bit key could be brute-forced

MD5 Preimage Attack
Safety Margin

• Max. computing available to any attacker is 296
calculations in a year

• Preimage attack requires 2128 calculations

• Safety margin is 230 units time (calculations)

• 210 is 1024

• 230 is 1024 x 1024 x 1024 = 1 billion years

Naive Birthday Attack on
MD5

• Take 264 inputs, such as counting numbers
from 1 to 264

• Calculate the hashes, requiring 264
calculations

• Store them, using 264 units of storage

• What's the safety margin?

Requirements for Naive
Birthday Attack on MD5

• 264 calculations is not impossible

• But 264 bytes of storage?

• 1GB = 109 = 230

• 1TB = 240

• 1 million TB = 260

• 264 bytes = 16 million TB = 16,000 petabytes
 = 16 exabytes

• The world's storage is about 2500 exabytes
(see next slide)

Worldwide Data Center Storage
Capacity

Requirements for Naive
Birthday Attack on MD5

• If a large portion of all the world's processing
power

• And a large portion of all the world's storage

• Were used, it's possible

• But that just finds a collision

Preimage Attack

• Given an MD5 hash, can we find an input with
that hash value?

• MD5 is 128 bits long

• Calculating every possible hash (nearly) would
require 2128 calculations

• Storing them would take 2128 units of RAM

• Totally out of reach

Low-Memory Collision
Search: The Rho Method

• Don't just choose sequential inputs to hash

• Calculate the hash of the previous hash

• Start with any random seed s

• H1 = hash(s)

• H2 = hash(H1)

• H3 = hash (H2)

• etc...

Rho Method

Rho Method

• Tail and circle are approximately 2N/2 long

• Since the hashes are going in a circle

• You don't need to store all the hash values in
memory to detect a collision

• You store only hashes starting with many
zeroes ("Distinguished Points")

• This requires more calculations but less
storage -- time-memory trade-off

• Link Ch 6k

Rho Method

Rho Method for 16-bit
Hash

6a

Building Hash Functions

Iterative Hashing

• A long messages is broken into blocks

• Each block is processed consecutively using
compression or permutation

Compression-Based Hash Functions:
the Merkle-Damgard Construction

• Used in MD4, MD5, SHA-1, and SHA-2

• Also RIPEMD and Whirlpool

• H0 is an initial value (IV)

• M1, M2, ... are blocks of message data

• The final H is the output

Padding the Last Block

• Pad with 1, then zeroes, finally the message
length

• SHA-256 uses 512-bit blocks

• To pad the eight-bit message 10101010

Building Compression Functions:
The Davies-Meyer Construction

• Uses a block cipher to build a compression
function

• Use message blocks as keys

• The XOR feedback makes it secure against
decryption

Other Compression
Functions

• Less popular because

• They are more complex, or

• Require message block to be same length
as chaining value Hi

Permutation-Based Hash
Functions: Sponge Functions

• Simpler than using a cipher

• No key

• Keccak is the most famous sponge function

• Also known as SHA-3

The SHA Family

MD5

• Broken in 2005

• Fast attacks now to generate MD5 collisions

• It still cannot be reversed in general

SHA-0
• Approved by NIST in 1993

• Replaced in 1995 by SHA-1

• To fix an unidentified security issue

• 160 bits long, so it should take 280 calculations
to find a collision

• In 1998 an attack was found requiring only
260 calculations to find a SHA-0 collision

• Later attacks work in 233 calculations--less
than an hour of computing (for SHA-0)

SHA-1

• Uses an encryption function called SHACAL

• Repeats this calculation for every 512-bit block
in the message M

Compression Function

• 160-bit chaining value broken into 5 32-bit
words a b c d e

Attacks on SHA-1
• In 2005 an attack

was found that
would find a
collision in 263
calculations
instead of 280

• In 2017 a SHA-1
collision was
found

• No longer trusted

SHA-2

• Four versions

• SHA-224, SHA-256, SHA-384, SHA-512

• SHA-256 uses

• Eight 32-bit words

• 64 rounds of calculation with a more
complex expand function

Security of SHA-2

• All four SHA-2 algorithms are still considered
strong

• But researchers and NIST grew concerned
because its algorithm is close to SHA-1's

SHA-3 Finalists

• BLAKE

• Grøstl

• JH

• Keccak

• Skein

Keccak (SHA-3)

• Completely different from SHA-1 and SHA-2

• Sponge function with a 1600-bit state

• Includes four hashes:

• SHA3-224, SHA3-256, SHA3-384, SHA3-512

• And two extendable-output functions

• Can produce hashes of any length

• Called SHAKE128 and SHAKE256

BLAKE2

Speed
• BLAKE2 is as secure as SHA-3

• But much faster to compute

• Faster than MD5 or SHA-1

• Two functions

• BLAKE2 (also called BLAKE2b) optimized for
64-bit platforms, produces digests from 1 to 64
bytes

• BLAKE2s optimized for 8-bit to 32-bit
platforms, produces digests from 1 to 32 bytes

Usage

• BLAKE2 is the fastest secure hash available
today

• The most popular non-NIST-standard hash

• Used in many apps and in major libraries such
as openSSL and Sodium

BLAKE's Compression
Function

• Parameters: a counter and a flag

• Block cipher is based on ChaCha

• Which is based on Salsa20

BLAKE2b's Core
Operations

• Transforms the state
of four 64-bit words

• a b c d

• Using two message
words

• Mi Mj

How Things Can Go
Wrong

Misuse

• Using weak checksum algorithms like CRC32
for file integrity

• Instead of a cryptographic hash algorithm

The Length-Extension
Attack

• If you know the hash H(M)

• You can add more data to the right and
calculate the hash of the longer message

• Without knowing the original message

Effects

• Attacker can use H(M1 || M2) to generate

• H(M1 || M2 || M3)

• The effect depends on how applications use
hashes

• But some applications do get fooled

SHA-2 Length Extension

• SHA-2 is vulnerable

• Could have easily been avoided by making
the last compression function different

• BLAKE2 does that

Fooling Proof-of-Storage
Protocols

• A cloud server verifies that it has stored a
message M

• Server can cheat by keeping only the chain
value from hashing the message

• And discarding the message

• Server can still calculate the response by
length extension

• Works for SHA-1, SHA-2, SHA-3, and BLAKE

• Cure: hash C||M instead of M||C

Fooling Proof-of-Storage
Protocols

6b

