CNIT 141
Cryptography for Computer Networks

Serious
Cryptography

A Practical Introduction
to Modem Encryption

';1 ¥ ‘.\
o A

oVl : o ! -8
ol i |F
¥ Wl -
\\"':{A‘l' ' L
:'\?é‘_‘} '
; - ; p
1 ova

lomwad by Rtew | &

(€

4. Block Ciphers

Updated 9-18-23

Topics

e \What is a Block Cipher

e How to Construct Block Ciphers

e The Advanced Encryption Standard (AES)
e Implementing AES

e Modes of Operation

e How Things Can Go Wrong

History

e US: Federal standard: DES (1979 - 2005)
o KGB: GOST 28147-89 (1990 - present)

e in 2000, NIST selected AES, developed in
Belgium

e They are all block ciphers

What is a Block Cipher

O T X m

Block Cipher

Encryption algorithm

Key

Plaintext block

Ciphertext block
C=E(K, P)

Decryption algorithm
P = D(K, C)

Security Goals

e Block cipher should be a pseudorandom
permutation (PRP)

e Attacker can't compute output without the
key

e Attackers should be unable to find patterns in
the inputs/output values

¢ The ciphertext should appear random

Block Size

e DES: 64 bit
e AES: 128 bit
e Chosen to fit into registers of CPUs for speed

e Block sizes below 64 are vulnerable to a
codebook attack

Codebook Attack

e Suppose you can encrypt arbitrary plaintext,
such as in a Wi-Fi network, but you don't know
the key

e Encrypt every possible plaintext, place in a
codebook

e | ook up blocks of ciphertext in the codebook

Codebook Attack

e The codebook size depends on the block size
e Blocksize of 32 bits requires 2432 entries
e 4 Dbillion, easily achieved
e Blocksize of 64 bits requires 264 entries
¢ Impossible to achieve
e S0 blocksize should be 64 or larger

How to Construct Block
Ciphers

Two Techniques

e Substitution-permutation (AES)
e Feistel (DES)

Rounds

® R is a round --in practice, a simple
transformation

e A block cipher with three rounds:
* C = R3(R2(R1(P)))

® |R is the inverse round function
e /| = iR1(iR2(iR3(C)))

Round Key

e The round functions R1R2R3 use the same
algorithm

e But a different round key

e Round keys are K1, K, Ks, ... derived from
the main key K using a key schedule

The Slide Attack and Round Keys

e Consider a block cipher with three rounds, and
with all the round keys identical

P
RP) =P, —»| R l_, R]_ﬂ e]_,q

Figure 4-1: The principle of the slide attack, against block ciphers with identical rounds

The Slide Attack and Round Keys

e |f an attacker can find plaintext blocks with
P> = R(P1)

e That implies C2 = R(C1)
e \Which often helps to deduce the key

)
RP) =P, —»| R l_> R I_ﬂ "]_,q

Figure 4-1: The principle of the slide attack, against block ciphers with identical rounds

The Slide Attack and Round Keys

e The solution is to make all round keys different
* Note: the key schedule in AES is not one-way
e Attacker can compute K from any K;

e This exposes it to side-channel attacks, like
measuring electromagnetic emanations

Substitution-Permutation
Networks

e Confusion means that each ciphertext bit
depends on several key bits

e Provided by substitution using S-boxes

e Diffusion means that changing a bit of
plaintext changes many bits in the ciphertext

e Provided by permutation

Feistel Schemes

e Only half the plaintext is
encrypted in each round

e By the F substitution-
permutation function

e Halves are swapped Iin each
round

e DES uses 16 Feistel rounds

The Advanced Encryption
Standard (AES)

DES

e DES had a 56-bit key
e Cracked by brute force in 1997
e 3DES was a stronger version

e Still considered strong, but slower than AES
e AES approved as the NIST standard in 2000

Plaintext

Rijndael
Encryptor

Cipherkey 011100

Ciphertext

[or J@8f 0a[o+Jos[os o7 os[os] o] 11 12] 13] 1¢] 15 6] 17] 18] 19] 20]
AES Rijndael Cipher explained as a Flash animation

e Link Ch 4a

14

515

BEaa

[[o)5
EEAaA
2]<]

Figure 4-3: The internal state of AES viewed as a 4 x 4 array of 16 bytes

P

'

I AddRoundKey

'

SubBytes
ShiftRows

MixColumns
AddRoundKey

6 (7 rounds . . .

SubBytes
ShiftRows

MixColumns

AddRoundKey

'

SubBytes

AddRoundKey

%

C

uolsundxgzAey

e Without KeyExpansion, all rounds would use the same key, K, and AES
would be vulnerable to slide attacks.

e Without AddRoundKey, encryption wouldn’t depend on the key;
hence, anyone could decrypt any ciphertext without the key.

e SubBytes brings nonlinear operations, which add cryptographic
strength. Without it, AES would just be a large system of linear equa-
tions that is solvable using high-school algebra.

e Without ShiftRows, changes in a given column would never affect the
other columns, meaning you could break AES by building four 232-el-
ement codebooks for each column. (Remember that in a secure block
cipher, flipping a bit in the input should affect all the output bits.)

e Without MixColumns, changes in a byte would not affect any other
bytes of the state. A chosen-plaintext attacker could then decrypt any
ciphertext after storing 16 lookup tables of 256 bytes each that hold
the encrypted values of each possible value of a byte.

AES in Python 3

from Crypto.Cipher import
AES

key = b"0000111122223333"
cipher = AES.new(key,

AES .MODE ECB)

a = b"Hello from AES!!"
ciphertext =
cipher.encrypt(a)

print (ciphertext.hex())

cipher = AES.new(key,

AES .MODE ECB)

d =

cipher.decrypt (ciphertext)
print (d)

>>> from Crypto.Cipher import AES

>>> key = b"0000111122223333"

>>> cipher = AES.new(key, AES.MODE_ECB)
>>> a = b"Hello from AES!!"

>>> ciphertext = cipher.encrypt(a)

>>> print(ciphertext.hex())
59305bbea4c731a03111423bb7cfb43e

>>>

>>> cipher = AES.new(key, AES.MODE_ECB)
>>> d = cipher.decrypt(ciphertext)

>>> print(d)

b'Hello from AES!!'

Implementing AES

Improving Efficiency

¢ Implementing each step
as a separate function
works, but it's slow

SubBytes
e Combining them with ShiffRows
"table-based MixColumns
implementations” and AddRoundKey

"native instructions" Is
faster

e Using XORs and table
lookups

OpenSSL Code is

Table-Based

/* round 1:
t0 = TeO[sO
t1 = TeO[s1
t2 = TeO[s2
t3 = TeO[s3
/* round 2:
sO = TeO[tO
s1 = TeO[t1
s2 = TeO[t2
s3 = TeO[t3
--snip--

>>
>>
>>

>>

*/

>>
>>

>>

24]
24]
24]
24]

24]
24]
24]
24]

Tel[(s1
Tel[(s2
Tel[(s3
Tel[(s0O

Te1[(t1
Tel[(t2
Tel[(t3
Tel[(tO

>>

>>

>>

>>

>>

>>

>>

>>

16) &
16) &
16) &
16) &

16) &
16) &
16) &
16) &

Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]
Oxff]

Te2[(s2
Te2[(s3
Te2[(s0O
Te2[(s1

Te2[(t2
Te2[(t3
Te2[(t0O
Te2[(t1

>>

>>

>>

>>

>>

>>

8) &
8) &
8) &
8) &

8) &
8) &
8) &
8) &

Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]
Oxff]

Te3[s3
Te3[s0
Te3[s1
Te3[s2

Te3[t3
Te3[t0O
Te3[t1
Te3[t2

Q0 0 0

Q0 0 0 @

Oxff]
Oxff]
Oxff]
Oxff]

Oxff]
Oxff]
Oxff]
Oxff]

rk[4];
rk[5];
rk[6];
rk[71;

rk[8];
rk[91;
rk[10];
rk[11];

Listing 4-2: The table-based C implementation of AES in OpenSSL

Timing Attacks

e The time required for encryption depends on
the key

e Measuring timing leaks information about the
key

e This is a problem with any efficient coding
e You could use slow code that wastes time
e A better solution relies on hardware

Native Instructions

PXOR %Xmm5, %xmmO

e AES-NI
_ AESENC BXMM6, %XmMmO
* Processor provides AESENC %xmm7, %xmmO
dedicated assembly AESENC %xmm8, %xmmO
:Ar\métsructlons that perform AESENC wxmd . %xmmO
AESENC %XmMm10, %xXmmO
® PlalnteXt |n FGQISter Xmmo AESENC %xmm]_]_, %XmMmO
e Round keys IN xmmb to AESENC %xmm12, %xmmO
xmm15 AESENC %xmm13, %xmmoO
e NI makes AES ten times AESENC — %xmmld, “%xmmd
faster AESENCLAST %xmm15, %xmmO

Is AES Secure?

e AES implements many good design principles

e Proven to resist many classes of
cryptoanalytic attacks

e But no one can foresee all possible future
attacks

e So far, no significant weakness in AES-128
has been found

Modes of Operation

Electronic Code Book
(ECB)

Pl P2 P3
e Each plaintext block is
encrypted the same E, E,
way
¢ |dentical plaintext
Cl CZ C3

blocks produce identical
ciphertext blocks

Figure 4-6: The ECB mode

AES-ECB

e |f plaintext repeats, so does ciphertext

plaintext = b"DEAD MEN TELL NODEAD MEN TELL NO"
ciphertext = cipher.encrypt(plaintext)
ciphertext.hex()

>>> plaintext = b"DEAD MEN TELL NODEAD MEN TELL NO"
>>> ciphertext = cipher.encrypt(plaintext)

>>> ciphertext.hex()
'66cc2a4741a704c7849450129bd29cebb66cc2a4741a704c7849450129bd2%9¢ces!

Staples Android App

The encryption uses AES in ECB (Electronic Code Book) mode, as shown by
making an account with this password:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal23A

oot
N\, Smapees

Staples® - Daily Deals &
STAPLES g |es

BN Stoples, Inc. test23231@mailinator.com
€ Everyone

]
T
OO0 e Link Ch 4b

FORGOT PASSWORD?

Sign in for Rewards & Benefits

Downloads 4699 2 Business Similar
‘ , . CREATE YOUR STAPLES ACCOUNT
Daily Deals for Online Shopping! Shop
Business, Price Match, Earn Rewards &

Save
L Preferences

Encrypted Password
Repeats

./shared_prefs/com.staples.mobile.cfa.xml: <string name="encryptedPassword">
Ex+zjrCIlgw/kkZOdIRfPhMfs46wilYMP5JGAHSEXz4VWo8KfvDtbU+NuhSpui58</string>

>>> a="Ex+zjrCIlgw/kkZO@dIRfPhMfs46wiJYMP5JGdHSE
Xz4VWo8KfvDtbU+NuhSpui58" |
>>> al = base64.b64decode(a)
>>> for ¢ in al:

d = hex(ord(c))

print d[2:],

13 1f b3 8e b0 88 96 ¢ 3f 92 46 74 74 84 5f 3e
13 1f b3 8e b0 88 96 ¢ 3f 92 46 74 74 84 5f 3e
15 5a 8f a 7e f@ ed 6d 4f 8d ba 14 a9 ba 2e 7c

>>> I

ECB Mode

e Encrypted image retains large blocks of solid
color

Cipher Block Chaining (CBC)

Figure 4-8: The CBC mode

e Uses a key and an initialization vector (1V)

e QOutput of one block is the IV for the next block
® |V is not secret; sent In the clear

CBC Mode

e Encrypted image shows no patterns

Choosing |V

e |f the same |V is used every time

e The first block is always encrypted the same
way

e Messages with the same first plaintext block
will have identical first ciphertext blocks

Parallelism

e ECB can be computed in parallel
e Each block is independent
e CBC requires serial processing

e Qutput of each block used to encrypt the
next block

Message Length

e AES requires 16-byte blocks of plaintext

e Messages must be padded to make them long
enough

[>>> plaintext = "HELLO"
[>>> ciphertext = cipher.encrypt(plaintext)
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>

File "/usr/local/lib/python2.7/site—-packages/Crypto/Cipher/blocka
lgo.py", line 244, in encrypt
return self._cipher.encrypt(plaintext)
ValueError: Input strings must be a multiple of 16 in length
>>>

PKCS#/7 Padding

 If one byte of padding is needed, use 01

o If two bytes of padding are needed, use 0202

o If three bytes of padding are needed, use 030303

o If fifteen bytes of padding are needed, use

0f0f0f0f0f0f0f0f0f0f0f0f0£f0f0f

e If no bytes of padding are needed, add an entire block of sixteen chr(16)
characters,or 10101010101010101010101010101010

e The last byte of the plaintext is always
between '\x00' and \10'

e Discard that many bytes to get original
plaintext

Padding Oracle Attack

e Almost everything uses PKCS#7 padding

e But if the system displays a "Padding Error”
message the whole system shatters like glass

e That message is sufficient side-channel
information to allow an attacker to forge
messages without the key

Ciphertext Stealing

e An alternative to padding
e Prevents padding oracle attacks
e Pad with zeroes
e Swap last two blocks of ciphertext
e Discard extra bytes at the end
e Images on next slides from Wikipedia

Ciphertext Stealing

Figure 4-9: Ciphertext stealing for CBC-mode encryption

Security of Ciphertext
Stealing

¢ No major problems
e Inelegant and difficult to get right

e NIST SP 800-38A specifies three different
ways to implement it

e Rarely used

Counter (CTR) Mode

NICir NICtr+1 NICtr+ 2

Figure 4-10: The CTR mode

e Produces a pseudorandom byte stream
e XOR with plaintext to encrypt

Nonce

e Use a different N for each message
® N is not secret, sent In the clear

Nonce Must not be
Reused

S ./Jaes_ctr.py

K = 130alaa77fa58335272156421cb2a3ea
enc(00010203) = b23d284e
enc(b23d284e) = 00010203

e The first block produces the same bitstream if
a nonce and key are re-used

No Padding

e CTR mode uses a block cipher to produce a
pseudorandom byte stream

e Creates a stream cipher
e Message can have any length
e No padding required

Parallelizing

e CTR iIs faster than any other mode

e Stream can be computed in advance, and in
parallel

e Before even knowing the plaintext

How Things Can Go
Wrong

Two Attacks

¢ Meet-in-the-middle
e Padding oracle

Meet-in-the-Middle Attacks

e 3DES does three rounds of DES
e \Why not 2DES?

Figure 4-11: The 3DES block cipher construction

Attacking 2DES

e Two 56-bit keys, total 112 bits

e End-to-end brute force would take 2*112
calculations

P E e D O

Figure 4-12: The meet-in-the-middle attack

Attacking 2DES

e Attacker inputs known P and gets C
e \Wants to find K1, Kz

Figure 4-12: The meet-in-the-middle attack

Attacking 2DES

e Make a list of E(K1, P) for all 256 values of K1
e Make a list of D(K2, P) for all 2*56 values of K2

e Find the item with the same values Iin each list
e This finds K1 and Kz with 2257 computations

K, K,

P E e D o

Figure 4-12: The meet-in-the-middle attack

Meet-in-the-Middle Attack
on 3DES

e One table has 2"56 entries
e The other one has 2*112 entries
e 3DES has 112 bits of security

K K

2

Figure 4-11: The 3DES block cipher construction

|

Padding Oracle

Encrypting 47 Bytes

Suppose the plaintext is only 47 bytes long. In that case, a byte of padding (purple) must be added, as shown below.

Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]
1 | S |5 5 5 I 5] 9S8)E 8 85 L S)))) SEDEEEEEEEEEEER"
Initialization Vector (IV)
ZNDE AZIEE A0S A0 D) - -
Key block cipher Key block cnpher Key block cupher
encryption encryption encryption
| |
6 6 l
HEEENEEE NS EE §EE | [I O N [(W) S S S 5 5 W S S EEEEDEE
Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]

Cipher Block Chaining (CBC) mode encryption

Padding Oracle

Decryption

Using the same key and iv (blue), the ciphertext (yellow) can be decrypted to find the plaintext (green). The last byte is the padding (purple), as shown below.

Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]
I I /5 9 ¥ I (S SE E T I I I U ElEEEE e s e
| |
| + l
block cipher block cipher block cipher
ey decryption Rey decryption Key decryption

Initialization Vector (IV)
R R — > >

(Y e e e) I e et | iy =] Y S] Sy e ey ey ey] IEEEEEEEEEEEEEN)
Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

Padding Oracle

e Change the last byte in second block

e This changes the 17 bytes shown in red

Ciphertext [0:16]

IE [E 5 5 = E 5 5 &8 EEEEEE
|

Y

block cipher
decryption

Key —

Initialization Vector (1V)
(T e T T T T T T) ———

Ciphertext [16:32]

EEEEEEEEEEEEEEE |

Key —

|

'

block cipher
decryption

)L 1y o o o o
Plaintext [0:16]

Plaintext [16:32]

.

Ciphertext [32:48]

5 = = [E 5 5 5 [E 5 5 5 5= E S S

Key —

l

block cipher
decryption

.

CITTTTITTTITITTI T

Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

Padding Oracle

e Try all 256 values of last byte in second block
e One of them has valid padding of \x01'
e This determines the orange byte

Ciphertext [0:16] Ciphertext [16:32] Ciphertext [32:48]
EEEAREEEEERERERRNER HEEEEEEEEEEEEEE | AEEEIAEEERNEEBERR
1 l
‘ ‘ l Intermediate[47]
Key block cipher Ke block cipher Ke block cipher
decryption y decryption y decryption /
Initialization Vector (IV) ENEEEEEEEEEEEEE
LR T el o Ol I D Y I ———> - >$

(= g D e iy iy o e oy I o ol ey CITTTTITITITITITITITITT S
Plaintext [0:16] Plaintext [16:32] Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

Padding Oracle

e Continue, 256 guesses finds the next orange

byte

Ciphertext [0:16]

Ciphertext [16:32] J

Ciphertext[30] and
Ciphertext[31]

FEEAREEAAAEEESAS

Ll

Ciphertext [32:48]

‘—

block cipher
decryption

Key —

Initialization Vector (IV)

(LA g o W) oy~

Key —»

Intermediate[46] and

[TTTTTTTT 1T e AEEFERAEEEEEEE®SH)
block cipher Ke block cipher
decryption y decryption

/ Intermediate[47]

[[51 1] 0) D o

Plaintext [0:16]

% HEEEEEEEEEEEEE

EEEEEEEEEEEEEE | |

Plaintext [16:32]

Plaintext [32:48]

Cipher Block Chaining (CBC) mode decryption

N

Plaintext[46] and
Plaintext[47]

Padding Oracle

e Once the orange bytes are known

e Attacker can forge plaintext[32:48] to say
anything

Ciphertext[30] and
Ciphertext[31]

Ciphertext [0:16] Ciphertext [16:32] J Ciphertext [32:48]
FEEEREEERGDEFES G EEEEEEEEEEEEEE | AEEEEAEEEEREEESH)
l— l— l Intermediate[46] and
: : : Intermediate[47]

Key block cup‘her Key block cnpher Key block CIpher
decryption decryption decryption

Initialization Vector (IV) HEEEEEEEEEEEEE

(i o g o o o o o o g ——— > =$

2 1 0) |) EEEEEEEEEEEEEE | |
Plaintext [0:16] Plaintext [16:32] Plaintext [32:48] \

Cipher Block Chaining (CBC) mode decryption Plaintext[46] and

Plaintext[47]

e 3:13 -8:40
e https://www.youtube.com/watch?v=tPEIOmnUY _o

NOBUS

e The NSA wants us to use cryptography that is
e \Weak enough so the NSA can break it
e Strong enough so no one else can break it

* "Nobody But Us”
e This depends on the NSA keeping secrets

Edward Snowden

EDWARD SNOW,

NSA Whistleblo

e | eaked NSA secrets in 2013
e https://www.youtube.com/watch?v=0hLjuVylirs

https://www.youtube.com/watch?v=0hLjuVyIIrs

DES and the NSA

e The NSA first weakened DES

e Shortening the 128-bit key in the original
"Lucifer" system from IBM to 56 bits

e The NSA also strengthened it

e Improving the "S-Box" to resist differential
cryptanalysis, a technique that was secret at
the time

e This created a NOBUS system

