CNIT 141
Cryptography for Computer Networks

Serious
Cryptography

A Practical Introduction
to Modem Encryption

';1 ¥ ‘.\
o A

oVl : o ! -8
ol i |F
¥ Wl -
\\"':{A‘l' : ,".
:'\?é‘_‘} '
; - ; p
18

fsnead iy Rtew 1 o

(€

2. Randomness

Updated 8-28-2023

Topics

e Random or Non-Random?
e Randomness as a Probability Distribution
e Entropy: A Measure of Uncertainty

e Random Number Generators (RNGs) and
Pseudorandom Number Generators (PRNGs)

e Real-World PRNGs
e How Things Can Go Wrong

Random or Non-Random?

Thursday October 25, 2001 ' 6 6 6 &
TOUR OF ACCOUNTING

ARE

YOU

SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

yo!,\sfglc 2001 United Feature Syndicate, Inc.

www.dilbert.com scottadams@aol.com

What iIs Randomness?

¢ |[s 11010110 more random than 00000000 ?
e Both are equally likely, as exact values

e But if the first one is described as "three
zeroes and five ones" it's more likely

e So if we see something that "looks like"
11010110

e That is more likely to be truly random than
00000000

Randomness as a
Probability Distribution

Probability

e A fair coin
* 50% chance of head, 50% chance of tails
e Afair die
e 1/6 chance of 1, 1/6 of 2, ... up to 6
e Total is always 100%
¢ Uniform distribution

e Equal chance of every outcome

Entropy: A Measure of
Uncertainty

Definition of Entropy

e Distribution has probabilities

P1, P2, ..- PN
e Entropy Is

- p1 log(p1) - p2 log(p2) ... - pn log(pn)
¢ |og is to base 2

Examples

e One random bit: probabillities
112, 1/2

e Entropy is
-1/2 log(1/2) - 1/2 log(1/2)
log(1/2) = -1, so this is
-1/2 (-1) -1/12 (-1) = 1 bit

e Also called information content

Examples

e One random byte: probabilities
1/1256, 1/256, ... 1/256 (256 equal values)
e Entropy Is

- 1/256 log(1/256) - 1/256 log(1/256) ...
(256 terms)

log(1/256) = -8, so this is

- 1/256 (-8) - 1/256 (-8) ... (256 terms)
= 8 bits

Examples

¢ One non-random bit: probabilities
99% of 0, 1% of 1
e Entropy is
- 0.99 log(0.99) - 0.01 log(0.01)
0.014 + .066 = 0.08
e For 99.99% of 0, 0.01% of 1
e Entropy is .00147

e |[f there's no randomness, entropy is zero

Python Code

GNU nano 2.0.6 File: ent.py

import math

prob = [.5, .5]
print("Probabilities:", prob)

e = 0.0
for p 1n prob:
e —= p * math.log(p, 2)

print("Entropy:", e)

Sam-2:141 sambowne$ python3 ent.py
Probabilities: [0.5, 0.5]
Entropy: 1.0

Eight Possibilities

GNU nano 2.0.6 File: ent2.py

import math

prob = [.125, .125,.125,.125,.125,.125,.125,.125]
print("Probabilities:", prob)

e = 0.0
for p 1in prob:
e —= p * math.log(p, 2)

print("Entropy:", e)

Sam-2:141 sambowne$ python3 ent2.py
Probabilities: [0.125, 0.125, 06.125, 0.125, 0.125, 0.125, 0.125, 0.125]
Entropy: 3.0

Weighted Coin

GNU nano 2.0.6 File: ent3.py

import math

prob = [.9, .1]
print("Probabilities:", prob)

e = 0.0
for p 1n prob:
e —= p * math.log(p, 2)

print("Entropy:", e)

Sam-2:141 sambowne$ python3 ent3.py
Probabilities: [0.9, 0.1]
Entropy: 0.4689955935892812

Random Number Generators (RNGs)
and

Pseudorandom Number Generators
(PRNGs)

RNGs and PRNGs

e To generate randomness, computers need
e A source of entropy

e Provided by a Random Number
Generator (RNG)

e An algorithm to produce random bits from
the entropy

e Pseudorandom Number Generator
(PRNG)

RNG

¢ Randomness comes from the environment
e Analog, chaotic, unpredictable

e [emperature, acoustic noise, random
electrical fluctuations

e Sensors: I/O devices, network or disk
activity, logs, running processes,
keypresses, mouse movements

QRNG

¢ Quantum Random Noise Generator

e Radioactive decay, vacuum polarization,
photons

PRNG

e Pseudorandom Noise Generator
e Create many artificial random bits
e From a few truly random bits

e Continues working even if physical source
stops (e.g., the mouse stops moving)

\/\/\/—>| RNG —»lOO...O]—»IPRNG—»]OHOO] ...10110

Figure 2-1: RNGs produce few unreliable bits from analog sources, whereas PRNGs expand
those bits to a long stream of reliable bits.

How PRNGs Work

e PRNG receives random bits from RNG
e at regular intervals
e Updates the entropy pool
e Mixes pool's bits together when updating

e To remove bias

DRBG

¢ The PRNG uses a Deterministic Random Bit
Generator (DRBG)

e Expands some bits from the entropy pool into
a much longer sequence

e Deterministic: not randomized

e Always produces the same stream of bits
from the same input

PRNG Operations

® init()

® |nitializes the entropy pool and the internal state of
the PRNG

¢ refresh()

e Updates the entropy pool using R (data from the
RNG), called reseeding

® R is called the seed
® next()

e Returns N pseudorandom bits and updates the
entropy pool

Security Concerns

e Backtracking resistance
e Also called forward secrecy

e Previously generated bits are impossible to
recover

e Prediction resistance
e Future bits are impossible to predict

Utah Data Center

Power substations

Fuel
Water storage fanks

e

/ Water storage

6 cooling %

towers Q/
N
C ~

hiller
plant

buildings towers
Chiller
plant

Visitor center buildings

Administration

250 m

e NSA stores exabytes of captured encrypted traffic
e 1 EBis 1 million TB
e \Waiting for cryptographic keys to be found

Achieving Resistance

e Backtracking resistance

e refresh and next operations must be
irreversible, so

e |f attacker obtains the entropy pool, they still
can't determine previously generated bits

® Prediction resistance

e PRNG must refresh regularly with R values
that the attacker cannot find or guess

Fortuna

e A PRNG designed in 2003 by Neils Ferguson
and Bruce Schneier

e Used in Windows

e Uses 32 entropy pools, a 16-byte key, and a
16-byte counter

e Mac OS and iOS use Yarrow

e Designed in 1998 by Kelsey and Schneier

Security Failures

e |[f RNGs fail to produce enough random bits

e Fortuna might not notice, and produce lower-
quality pseudorandom bits

e Or stop delivering bits
¢ |f seed files are stolen or re-used,

e Fortuna will produce identical sequences of
bits

Cryptographic vs. Non-
Cryptographic PRNGs

e Most PRNGs provided for programming
languages are non-cryptographic

e Only concerned with statistical randomness,
not predictability

e Often use Mersenne Twister algorithm
e Used in PHP, Python, Ruby, R, and more

o Cryptographic PRNGs are unpredictable

Real-World PRNGs

Unix-Based Systems

¢ /dev/urandom gets data from the crypto
PRNG

e Non-blocking: always returns data, even if
entropy is low

¢ /dev/random

® Blocking: refuses to return data if entropy is
low

Blocking

e Blocking turned out to be a bad idea
e Entropy estimates are unreliable
e Attackers can fool them
¢ /dev/random runs out of entropy quickly

e Producing denial of service while waiting
for more entropy

® |n practice, /dev/iurandom is better

-resh Tomcat takes loong time to start up

Haveged

The haveged project is an attempt to provide an easy-to-use, unpredictable random number
generator based upon an adaptation of the HAVEGE algorithm. Haveged was created to remedy low-
entropy conditions in the Linux random device that can occur under some workloads, especially on

headless servers.

e Links Ch 2b, Ch 2c

Linux Commands
(Before 2022)

e Jo see entropy pool

@ for i in {1..100}; do cat /proc/sys/kernel/
random/entropy avail; sleep 2; done

e Jo consume entropy

e dd if=/dev/random bs=8 count=8 | base64

Demo: Without Haveged

root @kali: ~ - od root@kali: ~ @ ® O

File Edit View Search Terminal H{ File Edit View Search Terminal Help

cat /proc/sys/kernel/random/ent bt DYTes copled, u.vuu4us3ly S, 149 KB/S
py avail; sleep 2; done :~# dd if=/dev/random bs=8 count=8 | base6

1994 4
dd: warning: partial read (6 bytes); suggest iflag=
1966 fullblock .
1976 0+8 records in
1948 ©+8 records out
1931 48 bytes copied, 0.000217549 s, 221 kB/s
1896 KZ83Ao0WGgKAT0o04bMTEQZSsH17+sLXPnh3ASx5/1t01d3z9TUJbD
1921 IKyzz0hJP2wGG
1936 :~# dd if=/dev/random bs=8 count=8 | base6
1938 4 | | ,
1905 dd: warning: partial read (6 bytes); suggest iflag=
1783 fullblock .
278 0+8 records in
53 ©+8 records out
56 yQrgl/uaXp76mN52 fwOu@F] jLAqQLR+vITXSq9hAS5zoc/Cr7dUrF
59 VdCmqqF9wMjuB
62 48 bytes copied, 0.000265112 s, 181 kB/s
1 :~# dd if=/dev/random bs=8 count=8 | base6
4
26 dd: warning: partial read (6 bytes); suggest iflag=
~C fullblock
©+8 records in

-~ —~

Demo: With Haveged

root@kali:~ @ @ © root@kali: ~

File Edit View Search Terminal Help Edit View Search Terminal Help

1783 gl records in
278 records out
53 NpEQB9avqaeN61QIiuwD+hDTUM4n18] kek/mCQaIqEHqIGzk
56 XEytGJ1B+T
59 bytes copied, 0.000158845 s, 302 KkB/s
62 :~# dd if=/dev/random bs=8 count=8 | base6
1
3 warning: partial read (7 bytes); suggest iflag=
36 Lblock
[records in

:~# for i in {1..100}; do records out

cat /proc/sys/kernel/random/entrojbytes copied, 0.000177802 s, 298 kB/s
py avail; sleep 2; done S6paYw7VI1CMgjN8sztpOHrTiIxtm6lartAr2BQVk+mwsb60
2449 37ReVb3H9J1Y0OsLbuY=
2401 :~# dd if=/dev/random bs=8 count=8 | base6
2408

1966 warning: partial read (6 bytes); suggest iflag=
1337 Lblock

1951 records in

1451 records out

2464 bytes copied, 0.000168294 s, 285 KB/s

1448 amTIRtZ4MumTtQUBgh8EQTgeYmbacLOyR51dKWEe0o8Piz9Th
L zdyF2XA925

i~ |] ~|

250 Bits

e The /dev/random RNG was overhauled
e Now it always has 256 bits available entropy
e YOUu can't drain it

o https://www.reddit.com/r/archlinux/comments/
v/5tSw/entropy of devrandom_ stuck at 256/

WINndows

e CryptGenRandom() function
e Now replaced by BcryptGenRandom()

e Takes entropy from the kernel mode driver
cng.sys (formerly ksedd.sys)

e | oosely based on Fortuna

Intel RDRAND

e Hardware RNG introduced in 2012 with lvy
Bridge

e Uses RDRAND assembly language instruction
e Only partially documented
e Some people fear that it has an NSA backdoor

On the Possibility of a Back Door
in the NIST SP800-90 Dual Ec
Prng

Dan Shumow
Niels Ferguson
Microsoft

e Talk given in 2007
e Link Ch 2d

Conclusion

« WHAT WE ARE NOT SAYING:
NIST intentionally put a back door in this PRNG

« WHAT WE ARE SAYING:
The prediction resistance of this PRNG (as
presented in NIST SP800-90) is dependent on
solving one instance of the elliptic curve discrete
log problem.

(And we do not know If the algorithm designer
knew this before hand.)

Schneier on Security

Blog Newsletter Books Essays News Talks

Blog >

The Strange Story of Dual_EC_DRBG

e Dual EC DRBG is 1000x slower than other
options

e Championed by the NSA
e Schneler said to avoid it in 2007
e |Link Ch 2f

Secret Documents Reveal N.S.A. Campaign Against Encryption

Documents show that the N.S.A. has been waging a war against encryption using a battery of methods that
include working with industry to weaken encryption standards, making design changes to cryptographic
software, and pushing international encryption standards it knows it can break. Related Article »

TOP SECRET/SITK/NOFORN

(U) COMPUTER NETWORK OPERATIONS

(U) SIGINT ENABLING

This Exhibit is SECRET/NOFORN

FY 2012 Enacted

FY 2013 Request

FY 2012 — FY 2013

Fy 2011° -

Actual Base 0CoO Total Base 0CO Total Change Change
Funding ($M) 208.6 275.4 - 2754 2549 — J- 2549 204 .7
Civilian FTE 144 143 — 143 141 — 141 2 |
Civilian Positions 144 143 — 143 141 - 14] 2 |

—

Military Positions -

ncludes enacted OCO funding

Totals may not add due to rounding

—

e TOP SECRET leaks from Snowden
e New York Times, 2013 (Link Ch 2h)

(U) Project Description

(TS//SI//NF) The SIGINT Enabling Project actively engages the US and foreign IT industries to covertly

influence and/or overtly leverage their commercial products’ designs. These design changes make the systems
in question exploitable through SIGINT collection (e.g., Endpoint, MidPoint, etc.) with foreknowledge of the
modification. To the consumer and other adversaries, however, the systems' security remains intact, In this
way, the SIGINT Enabling approach uses commercial technology and insight to manage the increasing cost and

(U) Base resources in this project are used to:

(TS/SI//REL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'T systems,
networks, and endpoint communications devices used by targets.

(TS//SI//REL TO USA, FVEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

(TS/HSI/RELTO USA, FVEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

(TS/SI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

(TSH/SI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

NIST formally chops NSA-tainted
random number generator

By Juha Saarinen Dual _EC_DRBG algorithm no longer

Jun 29 2015
«472m - part of standard.

e Link Ch 2g

How Things Can Go
Wrong

Poor Entropy Sources

e Netscape's SSL in 1996

e Seeded from process ID and system time in
microseconds

¢ Predictable values

e Total entropy only 47 bits, but should have
had 128

Crypto shocker: four of every 1,000
public keys provide no security
(updated)

Almost 27,000 certificates used to protect webmail, e-commerce, and other ...

DAN GOODIN - 2/15/2012, 4:00 AM

e In 2012, researchers tested 7.1 million 1024-
bit RSA public keys

e 27,000 of them had a shared prime factor

* (porq)
e Link Ch 2i

Insufficient Entropy
at Boot Time

e Cause: devices generated public keys early
after bootup, before collecting enough entropy

prng.seed(seed)

P = prng.generate random prime()

q = prng.generate random_prime()

n = p*q

Non-Cryptographic PRNG

e Old version of MediaWiki, used for Wikipedia
e mt rand is a Mersenne Twister

/**
* Generate a hex-y looking random token for various uses.
* Could be made more cryptographically sure if someone cares.
* @return string
*/
function generateToken($salt = '') {
Stoken = dechex(mt_rand()).dechex(mt_rand());
return md5(Stoken . Ssalt);

Sampling Bug with
Strong Randomness

e Cryptocat had an
off-by-one error

e \Values had 45
bits of entropy
instead of 53

Cryptocat.random = function() {
var x, o = "";
while (o.length < 16) {
X = state.getBytes(1);
if (x[0] <= 250) {
o += X[0] % 10;
}
}

return parseFloat('0."' + o)

