
CNIT 141
Cryptography for Computer Networks

2. Randomness

Updated 8-28-2023

Topics

• Random or Non-Random?

• Randomness as a Probability Distribution

• Entropy: A Measure of Uncertainty

• Random Number Generators (RNGs) and
Pseudorandom Number Generators (PRNGs)

• Real-World PRNGs

• How Things Can Go Wrong

Random or Non-Random?

What is Randomness?

• Is 11010110 more random than 00000000 ?

• Both are equally likely, as exact values

• But if the first one is described as "three
zeroes and five ones" it's more likely

• So if we see something that "looks like"
11010110

• That is more likely to be truly random than
00000000

Randomness as a
Probability Distribution

Probability

• A fair coin

• 50% chance of head, 50% chance of tails

• A fair die

• 1/6 chance of 1, 1/6 of 2, ... up to 6

• Total is always 100%

• Uniform distribution

• Equal chance of every outcome

Entropy: A Measure of
Uncertainty

Definition of Entropy

• Distribution has probabilities
p1, p2, ... pN

• Entropy is
- p1 log(p1) - p2 log(p2) ... - pN log(pN)

• log is to base 2

Examples

• One random bit: probabilities
1/2, 1/2

• Entropy is
- 1/2 log(1/2) - 1/2 log(1/2)
log(1/2) = -1, so this is
- 1/2 (-1) - 1/2 (-1) = 1 bit

• Also called information content

Examples
• One random byte: probabilities

1/256, 1/256, ... 1/256 (256 equal values)

• Entropy is
- 1/256 log(1/256) - 1/256 log(1/256) ...
(256 terms)
log(1/256) = -8, so this is
- 1/256 (-8) - 1/256 (-8) ... (256 terms)
= 8 bits

Examples
• One non-random bit: probabilities

99% of 0, 1% of 1

• Entropy is
- 0.99 log(0.99) - 0.01 log(0.01)
0.014 + .066 = 0.08

• For 99.99% of 0, 0.01% of 1

• Entropy is .00147

• If there's no randomness, entropy is zero

Python Code

Eight Possibilities

Weighted Coin

2a

Random Number Generators (RNGs)

 and

Pseudorandom Number Generators
(PRNGs)

RNGs and PRNGs

• To generate randomness, computers need

• A source of entropy

• Provided by a Random Number
Generator (RNG)

• An algorithm to produce random bits from
the entropy

• Pseudorandom Number Generator
(PRNG)

RNG

• Randomness comes from the environment

• Analog, chaotic, unpredictable

• Temperature, acoustic noise, random
electrical fluctuations

• Sensors: I/O devices, network or disk
activity, logs, running processes,
keypresses, mouse movements

QRNG

• Quantum Random Noise Generator

• Radioactive decay, vacuum polarization,
photons

PRNG
• Pseudorandom Noise Generator

• Create many artificial random bits

• From a few truly random bits

• Continues working even if physical source
stops (e.g., the mouse stops moving)

How PRNGs Work

• PRNG receives random bits from RNG

• at regular intervals

• Updates the entropy pool

• Mixes pool's bits together when updating

• To remove bias

DRBG

• The PRNG uses a Deterministic Random Bit
Generator (DRBG)

• Expands some bits from the entropy pool into
a much longer sequence

• Deterministic: not randomized

• Always produces the same stream of bits
from the same input

PRNG Operations
• init()

• Initializes the entropy pool and the internal state of
the PRNG

• refresh()

• Updates the entropy pool using R (data from the
RNG), called reseeding

• R is called the seed

• next()

• Returns N pseudorandom bits and updates the
entropy pool

Security Concerns

• Backtracking resistance

• Also called forward secrecy

• Previously generated bits are impossible to
recover

• Prediction resistance

• Future bits are impossible to predict

• NSA stores exabytes of captured encrypted traffic

• 1 EB is 1 million TB

• Waiting for cryptographic keys to be found

Achieving Resistance

• Backtracking resistance

• refresh and next operations must be
irreversible, so

• If attacker obtains the entropy pool, they still
can't determine previously generated bits

• Prediction resistance

• PRNG must refresh regularly with R values
that the attacker cannot find or guess

Fortuna

• A PRNG designed in 2003 by Neils Ferguson
and Bruce Schneier

• Used in Windows

• Uses 32 entropy pools, a 16-byte key, and a
16-byte counter

• Mac OS and iOS use Yarrow

• Designed in 1998 by Kelsey and Schneier

Security Failures

• If RNGs fail to produce enough random bits

• Fortuna might not notice, and produce lower-
quality pseudorandom bits

• Or stop delivering bits

• If seed files are stolen or re-used,

• Fortuna will produce identical sequences of
bits

Cryptographic vs. Non-
Cryptographic PRNGs

• Most PRNGs provided for programming
languages are non-cryptographic

• Only concerned with statistical randomness,
not predictability

• Often use Mersenne Twister algorithm

• Used in PHP, Python, Ruby, R, and more

• Cryptographic PRNGs are unpredictable

Real-World PRNGs

Unix-Based Systems

• /dev/urandom gets data from the crypto
PRNG

• Non-blocking: always returns data, even if
entropy is low

• /dev/random

• Blocking: refuses to return data if entropy is
low

Blocking

• Blocking turned out to be a bad idea

• Entropy estimates are unreliable

• Attackers can fool them

• /dev/random runs out of entropy quickly

• Producing denial of service while waiting
for more entropy

• In practice, /dev/urandom is better

• Links Ch 2b, Ch 2c

Linux Commands
(Before 2022)

• To see entropy pool
• for i in {1..100}; do cat /proc/sys/kernel/
random/entropy_avail; sleep 2; done

• To consume entropy
• dd if=/dev/random bs=8 count=8 | base64

Demo: Without Haveged

Demo: With Haveged

256 Bits

• The /dev/random RNG was overhauled

• Now it always has 256 bits available entropy

• You can't drain it

• https://www.reddit.com/r/archlinux/comments/
v75t5w/entropy_of_devrandom_stuck_at_256/

Windows

• CryptGenRandom() function

• Now replaced by BcryptGenRandom()

• Takes entropy from the kernel mode driver
cng.sys (formerly ksedd.sys)

• Loosely based on Fortuna

Intel RDRAND

• Hardware RNG introduced in 2012 with Ivy
Bridge

• Uses RDRAND assembly language instruction

• Only partially documented

• Some people fear that it has an NSA backdoor

• Talk given in 2007

• Link Ch 2d

• Dual_EC_DRBG is 1000x slower than other
options

• Championed by the NSA

• Schneier said to avoid it in 2007

• Link Ch 2f

• TOP SECRET leaks from Snowden

• New York Times, 2013 (Link Ch 2h)

• Link Ch 2g

How Things Can Go
Wrong

Poor Entropy Sources

• Netscape's SSL in 1996

• Seeded from process ID and system time in
microseconds

• Predictable values

• Total entropy only 47 bits, but should have
had 128

• In 2012, researchers tested 7.1 million 1024-
bit RSA public keys

• 27,000 of them had a shared prime factor

• (p or q)

• Link Ch 2i

Insufficient Entropy
at Boot Time

• Cause: devices generated public keys early
after bootup, before collecting enough entropy

Non-Cryptographic PRNG

• Old version of MediaWiki, used for Wikipedia

• mt_rand is a Mersenne Twister

Sampling Bug with
Strong Randomness

• Cryptocat had an
off-by-one error

• Values had 45
bits of entropy
instead of 53

2b

