CNIT 141 Cryptography for Computer Networks

12. Elliptic Curves

Updated 11-30-22

Topics

- What is an Elliptic Curve?
- The ECDLP Problem
- Diffie-Hellman Key Agreement over Elliptic Curves
- Choosing a Curve
- How Things Can Go Wrong

New & Improved

- ECC was introduced in 1985
- More powerful and efficient than RSA and classical Diffie-Hellman
- ECC with as 256-bit key is stronger than RSA with a 4096-bit key

Slow Adoption

- OpenSSL added ECC in 2005
- OpenSSH added it in 2011
- Used in Bitcoin
- Most applications based on DLP can use ECC instead
 - Except Secure Remote Password
 - Link Ch 12a

What is an Elliptic Curve?

Elliptic Curve over Real Numbers

$$y^2 = x^3 + ax + b$$

Figure 12-1: An elliptic curve with the equation $y^2 = x^3 - 4x$, shown over the real numbers

Elliptic Curves over Integers

- Mod 191
- From group **Z**₁₉₁ = 0, 1, 2, ... 190

Figure 12-2: The elliptic curve with the equation $y^2 = x^3 - 4x$ over Z_{191} , the set of integers modulo 191

The Field **Z**_p

- We'll use both addition and multiplication
- We need 0 as the additive identity element
 - $\mathbf{x} + \mathbf{0} = \mathbf{x}$
- There are inverses for addition (-x)
 - And for multiplication (denoted 1/x)
- Such a group is called a *field*
- A finite number of elements: *finite field*

Adding Points

- **P** + **Q**: Draw line connecting P and Q
 - Find the point where it intersects with the elliptic curve
 - Reflect around X-axis

Figure 12-3: A general case of the geometric rule for adding points over an elliptic curve

P + (-P)

$$P = (x_P, y_P)$$

- $P = (x_P, -y_P)$

- Adding these points makes a vertical line
- Goes to the "point at infinity"
 - Which acts as zero for elliptic curves

Figure 12-4: The geometric rule for adding points on an elliptic curve with the operation P + (-P) = 0 when the line between the points never intersects the curve

P + P

• Use tangent line

Multiplication

- **kP** = **P** + **P** + **P** + ... (**k** times)
- To calculate it faster, calculate:

•
$$P_2 = P + P$$

- $P_4 = P_2 + P_2$
- $\bullet P_8 = P_4 + P_4$
- etc.

What is a Group?

- A set of elements (denoted **x**, **y**, **z** below)
- An operation (denoted × below)
- With these properties
 - Closure
 - If x and y are in the group, $x \times y$ is too
 - Associativity $(x \times y) \times z = x \times (y \times z)$
 - Identity element **e** such that **e** × **x** = **x**
 - Inverse For every **x**, there is a **y** with **x** × **y** = **e**

Elliptic Curve Groups

- Points P, Q, R and "addition" form a group
 - Closure
 - If **P** and **Q** are in the group, **P** + **Q** is too
 - Associativity (P + Q) + R = P + (Q + R)
 - Identity element O is the point at infinity
 - Such that **P** + **O** = **P**
 - Inverse
 - For every P = (x, y), -P = (x, -y)
 - \boldsymbol{P} + (- \boldsymbol{P}) = \boldsymbol{O}

The ECDLP Problem

ECDLP

All elliptic curve cryptography is based in this problem

Given **P** and **Q**

Find **k** such that **Q** = **kP**

- Believed to be hard, like Discrete Logratim Problem
- Has withstood cryptanalysis since its introduction in 1985

Smaller Numbers

- Using the field **Z**_p
- Where *p* is *n* bits long
- The security is *n* / 2 bits
- A *p* 256 bits long provides 128 bits of security
- That would take more than 4096 bits with RSA
- ECC is much faster

Diffie-Hellman Key Agreement over Elliptic Curves

RSA-Based Diffie-Hellman (DH)

They can both calculate g^{ab} by combining public and secret information

Keep *a* secret Transmit *g*^a Calculate *g*^{ab} = *B*^a

Keep **b** secret Transmit **g**^b Calculate **g**^{ab} = **A**^b

ECDH

- Choose a fixed point **G** (not secret)
- Shared secret is $d_A P_B = d_B P_A = d_A d_B G$

Pick a random secret d_A Transmit $P_A = d_A G$ Calculate $d_A d_B G = d_A P_B$

Pick a random secret d_B Transmit $P_B = d_B G$ Calculate $d_A d_B G = d_B P_A$

Signing with Elliptic Curves

- ECDSA (Elliptic Curve Digital Signature Algorithm)
 - Replaces RSA and classical DSA
 - The only signature used in Bitcoin
 - Supported by many TLS and SSH implementations
- Consists of *signature generation* and verification algorithms

Signing with Elliptic Curves

- Signer holds a private key d
- Verifiers hold the public key P = dG
- Both know:
 - What elliptic curve to use
 - Its order *n* (the number of points in the curve)
 - Coordinates of a base point G

ECDSA Signature Generation

- Signer hashes the message to form *h*
 - With a function such as SHA-256 or BLAKE2
- Signer picks a random number **k**
 - Calculates *kG*, with coordinates (*x*, *y*)
- Signature is (*r*, *s*):

 $r = x \mod n$ $s = (h + rd) / k \mod n$

Signature Length

- If coordinates are 256-bit numbers
 - *r* and *s* are both 256 bits long
 - Signature is 512 bits long

ECDSA vs. RSA Signatures

- RSA is used only for encryption and signatures
- ECC is a family of algorithms
 - Encryption and signatures
 - Key agreement
 - Advanced functions such as identity-based encryption

ECDSA vs. RSA Signatures

- RSA's signature and verification algorithms are simpler than ECDSA
 - RSA's verification process is often faster because of the small public key e
- ECC has two major advantages
 - Shorter signatures
 - Faster signing speed

Speed Comparison

- ECDSA is 150x faster at signing than RSA
- Slightly faster at verifying

<pre>\$ openssl speed ecdsap256 rsa4096</pre>					
	sign	verify	sign/s	verify/s	
rsa 4096 bits	0.007267s	0.000116s	137.6	8648.0	
	sign	verify	sign/s	verify/s	
256 bit ecdsa (nistp256)	0.0000s	0.0001s	21074.6	9675.7	

Encrypting with Elliptic Curves

- Rarely used
 - Message size can't exceed about 100 bits
- RSA can use 4000 bits at same security level

Integrated Encryption Scheme (IES)

- Generate a Diffie-Hellman shared secret
 - Derive a symmetric key from the shared secret
 - Use symmetric encryption

Elliptic Curve Integrated Encryption Scheme (ECIES)

- Pick a random number, d, and compute the point Q = dG, where the base point G is a fixed parameter. Here, (d, Q) acts as an ephemeral key pair, used only for encrypting M.
- 2. Compute an ECDH shared secret by computing *S* = *dP*.
- 3. Use a key derivation scheme (KDF) to derive a symmetric key, *K*, from *S*.
- Encrypt M using K and a symmetric authenticated cipher, obtaining a ciphertext, C, and an authentication tag, T.

Choosing a Curve

Parameters

- Order (number of points), also called modulus
- *a* and *b* in

$$y^2 = x^3 + ax + b$$

Origin of the chosen *a* and *b*

Criteria for Security

- Order (number of points) must not be product of small numbers
- Curves that treat *P*+*Q* and *P*+*P* the same way are safer, to avoid information leaks

Unified addition law

 Creators of curve should explain how *a* and *b* were chosen, or people will be suspicious

NIST Curves

- Standardized in 2000
- Five *prime curves* (modulus is prime)
 - The most commonly used ones
- Ten others use "binary polynomials"
 - Make hardware implementation more efficient
 - Rarely used with elliptic curves

P-256

- The most common NIST curve
- Modulus is *p*

.

• **b** is a 256-bit number

$$p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$

$$y^2 = x^3 - 3x + b$$

Where Did b Come From?

- NSA never explained it well
- Most experts don't believe there's a backdoor
- **b** is the SHA-1 hash of this random-looking value

c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

But few people trust the NIST curves because of Snowden. Bruce Schneier wrote:

I no longer trust the constants. I believe the NSA has manipulated them through their relationships with industry.

and that:

I looked at the random seed values for the P-xxxr curves. For example, P-256r's seed is c49d360886e704936a6678e1139d26b7819f7e90. No justification is given for that value.

and:

I now personally consider this to be smoking evidence that the parameters are cooked.

And so, Bitcoin, Tor and so many applications avoid the NIST derived curves, and instead focus on **secp256k1** and **Curve 25519**. Bitcoin uses secp256k1 which has a prime of 2^{256} - 2^{32} -977, and Tor uses Curve 25519 which has prime of 2^{255} -19.

 https://medium.com/asecuritysite-when-bob-met-alice/ding-ding-its-secp256k1and-curve-25519-in-red-corner-and-nist-in-the-blue-corner-f49c4ad1c3a8

Curve 25519

- Published by Daniel J. Bernstein in 2006
- Faster than NIST standard curves
- Uses shorter keys
- No suspicious constants
- Uses same formula for **P+Q** and **P+P**

Curve 25519
$$y^2 = x^3 + 486662x^2 + x$$

p = 2²⁵⁵ - 19

- Used everywhere
 - Chrome, Apple, OpenSSH
- But not a NIST standard

Curve secp256k1

$$y^2 = x^3 + 7$$

 $p = 2^{256} - 2^{32} - 977$

• Used in Bitcoin

https://en.bitcoin.it/wiki/Secp256k1

Other Curves

- Old national standards
 - France: ANSSI curves
 - Germany: Brainpool curves
 - Use constants of unknown origin

Other Curves

- Newer curves, rarely used
 - Curve41417
 - More secure variant of Curve25519
 - Ed448-Goldilocks
 - 448-bit curve from 2014

How Things Can Go Wrong

Large Attack Surface

- Elliptic curves have
 - More parameters than classic Diffie-Hellman
 - More opportunities for mistakes
 - Possible vulnerabilities to side-channel attacks
 - Timing of calculations on large numbers

ECDSA with Bad Randomness

• Signing uses a secret random **k**

s = (h + rd) / k mod n

• If *k* is re-used, attacker can calculate *k*

 $k = (h_1 - h_2) / (s_1 - s_2)$

- This happened on the PlayStation 3 in 2010
 - Presented at CCC by failOverflow team

Invalid Curve Attack

- Attacker sends P_A that is not on the same curve
 - From a weak curve instead
- Target fails to verify that P_A is on the curve, and uses a secret $d_B P_A$ on a weak curve, so ECDLP can be solved

Doesn't know **d**_A Transmit malicious **P** Calculates secret **d**_B

Pick a random secret d_B Transmit $P_B = d_B G$ Calculate $d_B P$

Invalid Curve Attack

- Malicious client could trick server into using the wrong curve
- Exposing the server's secret key
- Some TLS implementations were shown to be vulnerable in 2015
 - https://threatpost.com/json-libraries-patched-against-invalidcurve-crypto-attack/124336/

JSON Libraries Patched Against Invalid Curve Crypto Attack

