CNIT 141

Cryptography for Computer Networks

12. Elliptic Curves

Updated 11-30-22

Topics

- What is an Elliptic Curve?
- The ECDLP Problem
- Diffie-Hellman Key Agreement over Elliptic Curves
- Choosing a Curve
- How Things Can Go Wrong

New \& Improved

- ECC was introduced in 1985
- More powerful and efficient than RSA and classical Diffie-Hellman
- ECC with as 256-bit key is stronger than RSA with a 4096-bit key

Slow Adoption

- OpenSSL added ECC in 2005
- OpenSSH added it in 2011
- Used in Bitcoin
- Most applications based on DLP can use ECC instead
- Except Secure Remote Password
- Link Ch 12a

What is an Elliptic Curve?

Elliptic Curve over Real Numbers
 $$
y^{2}=x^{3}+a x+b
$$

Figure 12-1: An elliptic curve with the equation $y^{2}=x^{3}-4 x$, shown over the real numbers

Elliptic Curves over Integers

- Mod 191
- From group $\mathbf{Z}_{191}=0,1,2, \ldots 190$

The Field $\mathbf{Z}_{\boldsymbol{p}}$

- We'll use both addition and multiplication
- We need 0 as the additive identity element
- $x+0=x$
- There are inverses for addition (-x)
- And for multiplication (denoted $1 / x$)
- Such a group is called a field
- A finite number of elements: finite field

Adding Points

- $\boldsymbol{P}+\boldsymbol{Q}$: Draw line connecting P and Q
- Find the point where it intersects with the elliptic curve
- Reflect around X-axis

Figure 12-3: A general case of the geometric rule for adding points over an elliptic curve

$P+(-P)$

$$
\begin{aligned}
& P=\left(x_{P}, y_{P}\right) \\
& -P=\left(x_{P},-y_{P}\right)
\end{aligned}
$$

- Adding these points makes a vertical line
- Goes to the "point at infinity"
- Which acts as zero for elliptic curves

Figure 12-4: The geometric rule for adding points on an elliptic curve with the operation $\mathrm{P}+(-\mathrm{P})=0$ when the line between the points never intersects the curve

$P+P$

- Use tangent line

Multiplication

- $\boldsymbol{k} \boldsymbol{P}=\boldsymbol{P}+\boldsymbol{P}+\boldsymbol{P}+\ldots$ (\boldsymbol{k} times)
- To calculate it faster, calculate:
- $P_{2}=P+P$
- $P_{4}=P_{2}+P_{2}$
- $P_{8}=P_{4}+P_{4}$
- etc.

What is a Group?

- A set of elements (denoted $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ below)
- An operation (denoted \times below)
- With these properties
- Closure
- If \boldsymbol{x} and \boldsymbol{y} are in the group, $\boldsymbol{x} \times \boldsymbol{y}$ is too
- Associativity $(x \times y) \times z=x \times(y \times z)$
- Identity element \mathbf{e} such that $\mathbf{e} \times \boldsymbol{x}=\boldsymbol{x}$
- Inverse For every \boldsymbol{x}, there is a \boldsymbol{y} with $\boldsymbol{x} \times \boldsymbol{y}=\mathbf{e}$

Elliptic Curve Groups

- Points $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$ and "addition" form a group
- Closure
- If \boldsymbol{P} and \boldsymbol{Q} are in the group, $\boldsymbol{P}+\boldsymbol{Q}$ is too
- Associativity $(\boldsymbol{P}+\boldsymbol{Q})+\boldsymbol{R}=\boldsymbol{P}+(\mathbf{Q}+\boldsymbol{R})$
- Identity element \mathbf{O} is the point at infinity
- Such that $\boldsymbol{P}+\mathbf{O}=\boldsymbol{P}$
- Inverse
- For every $\boldsymbol{P}=(\boldsymbol{x}, \boldsymbol{y}),-\boldsymbol{P}=(\boldsymbol{x},-\boldsymbol{y})$
- $P+(-P)=0$

The ECDLP Problem

ECDLP

- All elliptic curve cryptography is based in this problem

Given \boldsymbol{P} and \mathbf{Q}

Find \boldsymbol{k} such that $\mathbf{Q}=\boldsymbol{k} \boldsymbol{P}$

- Believed to be hard, like Discrete Logratim Problem
- Has withstood cryptanalysis since its introduction in 1985

Smaller Numbers

- Using the field \mathbf{Z}_{p}
- Where \boldsymbol{p} is \boldsymbol{n} bits long
- The security is $\boldsymbol{n} / 2$ bits
- A p 256 bits long provides 128 bits of security
- That would take more than 4096 bits with RSA
- ECC is much faster

Diffie-Hellman Key Agreement over Elliptic Curves

RSA-Based Diffie-Hellman

 (DH)- They can both calculate $g^{a b}$ by combining public and secret information

Keep a secret
Transmit \mathbf{g}^{a}
Calculate $\boldsymbol{g}^{\mathbf{a b}=\boldsymbol{B}^{\boldsymbol{a}}}$

Keep b secret Transmit $\boldsymbol{g}^{\boldsymbol{b}}$
Calculate $\boldsymbol{g}^{\mathbf{a b}}=\boldsymbol{A}^{\boldsymbol{b}}$

ECDH

- Choose a fixed point \mathbf{G} (not secret)
- Shared secret is $d_{A} P_{B}=d_{B} P_{A}=d_{A} d_{B} G$

Pick a random secret $\boldsymbol{d}_{\boldsymbol{A}}$
Transmit $P_{A}=d_{A} G$
Calculate $d_{A} d_{B} G=d_{A} P_{B}$

Pick a random secret $\boldsymbol{d}_{\boldsymbol{B}}$ Transmit $P_{B}=d_{B} G$
Calculate $d_{A} d_{B} G=d_{B} P_{A}$

Signing with Elliptic Curves

- ECDSA (Elliptic Curve Digital Signature Algorithm)
- Replaces RSA and classical DSA
- The only signature used in Bitcoin
- Supported by many TLS and SSH implementations
- Consists of signature generation and verification algorithms

Signing with Elliptic Curves

- Signer holds a private key d
- Verifiers hold the public key $\boldsymbol{P}=\boldsymbol{d} \boldsymbol{G}$
- Both know:
- What elliptic curve to use
- Its order \boldsymbol{n} (the number of points in the curve)
- Coordinates of a base point \boldsymbol{G}

ECDSA Signature Generation

- Signer hashes the message to form \boldsymbol{h}
- With a function such as SHA-256 or BLAKE2
- Signer picks a random number \boldsymbol{k}
- Calculates $\boldsymbol{k} \boldsymbol{G}$, with coordinates $(\boldsymbol{x}, \boldsymbol{y})$
- Signature is $(\boldsymbol{r}, \boldsymbol{s})$:

$$
r=x \bmod n \quad s=(h+r d) / k \bmod n
$$

Signature Length

- If coordinates are 256-bit numbers
- r and s are both 256 bits long
- Signature is 512 bits long

ECDSA vs. RSA Signatures

- RSA is used only for encryption and signatures
- ECC is a family of algorithms
- Encryption and signatures
- Key agreement
- Advanced functions such as identity-based encryption

ECDSA vs. RSA Signatures

- RSA's signature and verification algorithms are simpler than ECDSA
- RSA's verification process is often faster because of the small public key \mathbf{e}
- ECC has two major advantages
- Shorter signatures
- Faster signing speed

Speed Comparison

- ECDSA is $150 x$ faster at signing than RSA
- Slightly faster at verifying

\$ openssl speed ecdsap256 rsa4096				
	sign	verify	sign/s	verify/s
rsa 4096 bits	0.007267 s	0.000116 s	137.6	8648.0
	sign	verify	sign/s	verify/s
256 bit ecdsa (nistp256)	0.0000 s	0.0001 s	21074.6	9675.7

Encrypting with Elliptic Curves

- Rarely used
- Message size can't exceed about 100 bits
- RSA can use 4000 bits at same security level

Integrated Encryption Scheme (IES)

- Generate a Diffie-Hellman shared secret
- Derive a symmetric key from the shared secret
- Use symmetric encryption

Elliptic Curve Integrated Encryption Scheme (ECIES)

1. Pick a random number, d, and compute the point $Q=d G$, where the base point G is a fixed parameter. Here, (d, Q) acts as an ephemeral key pair, used only for encrypting M.
2. Compute an ECDH shared secret by computing $S=d P$.
3. Use a key derivation scheme (KDF) to derive a symmetric key, K, from S.
4. Encrypt M using K and a symmetric authenticated cipher, obtaining a ciphertext, C, and an authentication tag, \boldsymbol{T}.

Choosing a Curve

Parameters

- Order (number of points), also called modulus
- \boldsymbol{a} and \boldsymbol{b} in

$$
y^{2}=x^{3}+a x+b
$$

- Origin of the chosen \boldsymbol{a} and \boldsymbol{b}

Criteria for Security

- Order (number of points) must not be product of small numbers
- Curves that treat $\boldsymbol{P}+\boldsymbol{Q}$ and $\boldsymbol{P}+\boldsymbol{P}$ the same way are safer, to avoid information leaks
- Unified addition law
- Creators of curve should explain how a and b were chosen, or people will be suspicious

NIST Curves

- Standardized in 2000
- Five prime curves (modulus is prime)
- The most commonly used ones
- Ten others use "binary polynomials"
- Make hardware implementation more efficient
- Rarely used with elliptic curves

P-256

- The most common NIST curve
- Modulus is p
- \boldsymbol{b} is a 256-bit number

$$
\begin{aligned}
& p=2^{256}-2^{224}+2^{192}+2^{96}-1 \\
& y^{2}=x^{3}-3 x+b
\end{aligned}
$$

Where Did b Come From?

- NSA never explained it well
- Most experts don't believe there's a backdoor
- \boldsymbol{b} is the SHA-1 hash of this random-looking value
c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

But few people trust the NIST curves because of Snowden. Bruce Schneier wrote:

I no longer trust the constants. I believe the NSA has manipulated them through their relationships with industry.
and that:

I looked at the random seed values for the P-xxxr curves. For example, P256 's seed is c49d360886e704936a6678e1139d26b7819f7e90. No justification is given for that value.
and:

I now personally consider this to be smoking evidence that the parameters are cooked.

And so, Bitcoin, Tor and so many applications avoid the NIST derived curves, and instead focus on secp 256 k 1 and Curve 25519. Bitcoin uses secp 256 k 1 which has a prime of $2^{256}-2^{32}-977$, and Tor uses Curve 25519 which has prime of $2^{255}-19$.

- https://medium.com/asecuritysite-when-bob-met-alice/ding-ding-its-secp256k1-and-curve-25519-in-red-corner-and-nist-in-the-blue-corner-f49c4ad1c3a8

Curve 25519

- Published by Daniel J. Bernstein in 2006
- Faster than NIST standard curves
- Uses shorter keys
- No suspicious constants
- Uses same formula for $\boldsymbol{P}+\boldsymbol{Q}$ and $\boldsymbol{P}+\boldsymbol{P}$

Curve 25519

$$
\begin{aligned}
& y^{2}=x^{3}+486662 x^{2}+x \\
& p=2^{255}-19
\end{aligned}
$$

- Used everywhere
- Chrome, Apple, OpenSSH
- But not a NIST standard

Curve secp256k1

$$
\begin{aligned}
& y^{2}=x^{3}+7 \\
& p=2^{256}-2^{32}-977
\end{aligned}
$$

- Used in Bitcoin
https://en.bitcoin.it/wiki/Secp256k1

Other Curves

- Old national standards
- France: ANSSI curves
- Germany: Brainpool curves
- Use constants of unknown origin

Other Curves

- Newer curves, rarely used
- Curve41417
- More secure variant of Curve25519
- Ed448-Goldilocks
- 448-bit curve from 2014

How Things Can Go Wrong

Large Attack Surface

- Elliptic curves have
- More parameters than classic Diffie-Hellman
- More opportunities for mistakes
- Possible vulnerabilities to side-channel attacks
- Timing of calculations on large numbers

ECDSA with Bad Randomness

- Signing uses a secret random \boldsymbol{k}

$$
s=(h+r d) / k \bmod n
$$

- If \boldsymbol{k} is re-used, attacker can calculate \boldsymbol{k}
$k=\left(h_{1}-h_{2}\right) /\left(s_{1}-s_{2}\right)$
- This happened on the PlayStation 3 in 2010
- Presented at CCC by failOverflow team

Invalid Curve Attack

- Attacker sends P_{A} that is not on the same curve
- From a weak curve instead
- Target fails to verify that P_{A} is on the curve, and uses a secret $d_{B} P_{A}$ on a weak curve, so ECDLP can be solved

Doesn't know $\boldsymbol{d}_{\boldsymbol{A}}$
Transmit malicious \boldsymbol{P}
Calculates secret $\boldsymbol{d}_{\boldsymbol{B}}$

Pick a random secret $\boldsymbol{d}_{\boldsymbol{B}}$
Transmit $P_{B}=\boldsymbol{d}_{B} G$
Calculate $d_{B} P$

Invalid Curve Attack

- Malicious client could trick server into using the wrong curve
- Exposing the server's secret key
- Some TLS implementations were shown to be vulnerable in 2015
- https://threatpost.com/json-libraries-patched-against-invalid-curve-crypto-attack/124336/

JSON Libraries Patched Against Invalid Curve Crypto Attack

anoot?

