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Topics

• The Math Behind RSA


• The RSA Trapdoor Permutation


• RSA Key Generation and Security


• Encrypting with RSA


• Signing with RSA


• RSA Implementations


• How Things Can Go Wrong



The Math Behind RSA



The Group ZN*

• Integers modulo N


• Must contain an identity element: 1


• Each member must have an inverse


• So zero is excluded


• But Z4* contains {1,3}


• 2 has no inverse


• Because 4 is a multiple of 2 



The Group ZN*

• If N is prime, Zp* contains {1,2, 3, ... p-1}


• So Z5* contains {1,2,3,4}


• 0 is excluded because it has no inverse 



The Group Z10*

• Z10* contains {1, 3, 7, 9}


• 0, 2, 4, 5, 6, 8 are excluded


• Because they have no inverse


• Because they have a common factor with 10 


• They aren't co-prime with 10



Euler's Totient
• How many elements are in the group Zn*?


• When n is not prime, but the product of 
several prime numbers


• n = p1 ✖︎ p2 ✖︎ ... ✖︎ pm 


• ϕ(n) = (p1 - 1) ✖︎ (p2 - 1) ✖︎ ... ✖︎ (pm - 1)


• For Z10* 


• n = 10 = 2 ✖︎ 5


• ϕ(10) = 1 ✖︎ 4 : 4 elements in Z10* 



The RSA Trapdoor 
Permutation



RSA Parameters

• n is the modulus


• Product of two primes p and q


• e is the public exponent


• In practice, usually 65537


• Public key: (n, e)


• Private key: p and other values easily derived 
from it



Trapdoor Permutation

• x is the plaintext message


• y is the ciphertext


Encryption:     y = xe mod n  

Decryption:     x = yd mod n  


• d is the decryption key


• calculated from p and q



Calculating d

•  ed = 1 mod ϕ(n)


• Decryption:   x	 = yd mod n 
		 	 	 	 	  	 = (xe)d mod n 
		 	 	 	 	  	 = xed mod n 
		 	 	 	 	  	 = x mod n 
		 	 	 	 	 	 = x



Why mod ϕ(n) ?

• Fermat's Little Theorem (aka Euler's Theorem)


• Stated by Fermat in 1640 without proof


• Proven by Euler in 1736



Example: n=10



Example: n = 10

• 10 = 2 * 5; p = 2, q = 5


• ϕ = (p - 1) (q - 1) = 1 * 4 = 4 elements in group


• 3 is a generator of the group (see next slides)
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n=10; x=3

33 = 27 mod 10 
    = 7

34 = 81 mod 10 
    = 1



• Z10* contains {1, 3, 7, 9} 


• 4 elements


• 3 is a generator of the group


• Although n is 10, the powers of 3 repeat with a 
cycle of 4 (ϕ(n) )


• Encrypt by raising x to power e, forming y


• Decrypt by raising y to power d, returning x

Powers of 3 31 mod 10 = 3 
32 mod 10 = 9 
33 mod 10 = 7 
34 mod 10 = 1 
35 mod 10 = 3



• Z10* contains {1, 3, 7, 9} 


• 4 elements


• p = 2 and q = 5


• ϕ(n) = (p-1)(q-1) = 1x4 = 4 


• ed = 1 mod ϕ(n) 


• For e = 3, d = 3

Finding d

n=10; e=3

3x1 mod 4 = 3 
3x2 mod 4 = 2 
3x3 mod 4 = 1



• x is the plaintext message (3)


• y is the ciphertext

Encryption:       y	= xe mod n    
	 	 	     		 	 	 = 33 mod 10    
	 	 	     		 	 	 = 27 mod 10   
	 	 	     		 	 	 = 7  

Decryption:       x 	= yd mod n  
	 	 	 	 	 	 	 = 73 mod 10  
	 	 	 	 	 	 	 = 343 mod 10  
	 	 	 	 	 	 	 = 3

n=10; x=3; e=3; d=7



Example: n=14



2

n=14; x=3

0

31 = 3

1

3
4

5
67

13

8

12

9

11
10

2
0

32 = 9

1

3
4

5
67

13

8

12

9

11
10



2

n=14; x=3

0

33 = 27 mod 14 
    = 13

1

3
4

5
67

13

8

12

9

11
10

2
0

34 = 81 mod 14 
    = 11

1

3
4

5
67

13

8

12

9

11
10



2

n=14; x=3

0

35 = 243

1

3
4

5
67

13

8

12

9

11
10

2
0

36 = 729

1

3
4

5
67

13

8

12

9

11
10



• Z14* contains  
{1, 3, 5, 9, 11, 13} 


• 6 elements (ϕ(n) )


• 3 is a generator of the group

Powers of 3
31 mod 14 = 3 
32 mod 14 = 9 
33 mod 14 = 13 
34 mod 14 = 11 
35 mod 14 = 5 
36 mod 14 = 1



• Z14* contains  
{1, 3, 5, 9, 11, 13} 


• 6 elements


• p = 2 and q = 7


• ϕ(n) = (p-1)(q-1) = 1x6 = 6 


• ed = 1 mod ϕ(n) 


• For e = 5, d = 5

Finding d

n=14; x=3; e=5

5x1 mod 6 = 5 
5x2 mod 6 = 4 
5x3 mod 6 = 3 
5x4 mod 6 = 2 
5x5 mod 6 = 1



• x is the plaintext message (3)


• y is the ciphertext


Encryption:     y = xe mod n    
	 	 	     		 	 	 = 35 mod 14   
	 	 	     		 	 	 = 243 mod 14   
	 	 	     		 	 	 = 5  

Decryption:     x = yd mod n  
	 	 	 	 	 	 	 = 55 mod 14  
	 	 	 	 	 	 	 = 3125 mod 14  
	 	 	 	 	 	 	 = 3

n=14; x=3; e=5; d=5



RSA Key Generation and 
Security



Key Generation

• Pick random primes p and q


• Calculate ϕ(n) from p and q


• Pick e


• Calculate d (inverse of e)



RSA in Python 3

Commands

python3 -m pip install pycryptodome


python3 


from Crypto.PublicKey import RSA


from Crypto.Cipher import PKCS1_OAEP


key = RSA.generate(2048)


plaintext = b"encrypt this message"


cipher_rsa = PKCS1_OAEP.new(key)


ciphertext = cipher_rsa.encrypt(plaintext)


decrypted = cipher_rsa.decrypt(ciphertext)


print("Ciphertext:", ciphertext)


print("Decrypted:", decrypted)



RSA Encryption and Decryption in Python 3



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl31

Speed of Calculations

• Encryption is fastest

• Decryption is much slower

• Key generation is slowest



RSA in Python 3

Commands

from Crypto.PublicKey import RSA


import time


for i in range(5):


  keylen = 2048 * (2 ** i)


  t0 = time.time()


  key = RSA.generate(keylen)


  t1 = time.time() - t0


  print("Key length:", keylen, "Time:", t1)



Key Generation Times



Encrypting with RSA



Used with AES

• RSA typically not used to encrypt plaintext 
directly


• RSA is used to encrypt an AES private key



Textbook RSA

• Plaintext converted to ASCII bytes


• Placed in x


• RSA used to compute y = xe mod n



Malleability
• Encrypt two plaintext messages x1 and x2


• y1 = x1e mod n 


• y2 = x2e mod n


• Consider the plaintext (x1)(x2)


• Multiplying x1 and x2 together


• y = (x1e mod n)(x2e mod n) = (y1)(y2)


•  An attacker can create valid ciphertext without 
the key



Strong RSA Encryption: 
OAEP

• Optimal Asymmetric Encryption Padding


• Padded plaintext is as long as n


• Includes extra data and randomness





PKCS#1 v1.5

• An old method created by RSA


• Message m is padded to


• 0x00||0x02||r||0x00||m


• Where r is a random string


• Much less secure than OAEP


• Used in many systems

• https://crypto.stackexchange.com/questions/66521/why-does-

adding-pkcs1-v1-5-padding-make-rsa-encryption-non-deterministic



Signing with RSA



Digital Signatures
• Sign a message x with y = xd mod n 


• No one can forge the signature because d is 
secret


• Everyone can verify the signature using e


• x = ye mod n 


• Notice that x is not secret


• Signatures prevent forgeries, they don't 
provide confidentiality



Signing a Hash

• Signing long messages is slow and 
uncommon


• Typically the message is hashed


• Then the hash is signed



Textbook RSA Signatures

• Sign a message x with y = xd mod n 


• Attacker can forge signatures


• For x =0, 1, or n - 1



Blinding Attack
• You want to get the signature for message M


• Which the targeted user would never 
willingly sign


• Find a value R such that ReM mod n


• Is a message the user will sign


• That signature S is (ReM)d mod n


• = RedMd mod n = RMd mod n


• The signature we want is Md mod n = S/R



The PSS Signature Standard
• Probabilistic Signature Standard


• Makes signatures more secure, the way OAEP makes 
encryption more secure


• Combines the message with random and fixed bits



Full Domain Hash 
Signatures (FDH)

• The simplest scheme


• x = Hash(message)


• Signature y = xe mod n



FDH v. PSS

• PSS came later


• More proof of theoretical security


• Because of added randomness


• But in practice they are similar in security


• But PSS is safer against fault attacks


• Explained later



RSA Implementations



Just Use Libraries

• Much easier and safer than writing your own 
implementation



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Consider RSA with a 1024-bit key

• We need to calculate xe where e is 1024 

bits long

• x * x * x * x ....      21024 multiplications

• Competely impossible -- we can't even 

crack a 72-bit key yet (272 calculations)

51



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Use memory to save time

• Do these ten multiplications


• x2 = x * x

• x4 = x2 * x2

• x8 = x4 * x4

• x16 = x8 * x8

• ...

• x1024 = x512 * x512

• ...


• Combine the results to make any exponent

52



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• With this trick, a 1024-bit exponent can be 
calculated with only 1536 multiplications


• But each number being multiplied is 1024 
bits long, so it still takes a lot of CPU

53



Side-Channel Attacks

• The speedup from square-and-multiply means 
that exponent bits of 1 take more time than 
exponent bits of 0


• Measuring power consumption or timing can 
leak out information about the key


• Few libraries are protected from such attacks



• EverCrypt -- a library immune to timing attacks


• From Microsoft research


• Link Ch 10b



Small e for Faster 
Encryption

• Encryption: y = xe mod n


• Decryption: x = yd mod n


• Choosing small e makes encryption faster, but 
decryption slower



Chinese Remainder 
Theorem

• Replaces one operation mod n


• Encryption: y = xe mod n


• With two operations mod p and q


• Making RSA four times faster



How Things Can Go 
Wrong



Bellecore Attack on  
RSA-CRT

• Fault injection causes the CPU to make 
errors


• Alter the power supply 


• or hit chips with a laser pulse


• Can break deterministic schemes like CRT


• But not ones including randomness like PSS




