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Topics

• The Math Behind RSA 

• The RSA Trapdoor Permutation 

• RSA Key Generation and Security 

• Encrypting with RSA 

• Signing with RSA 

• RSA Implementations 

• How Things Can Go Wrong



The Math Behind RSA



The Group ZN*

• Integers modulo N 

• Must contain an identity element: 1 

• Each member must have an inverse 

• So zero is excluded 

• But Z4* contains {1,3} 

• 2 has no inverse 

• Because 4 is a multiple of 2 



The Group ZN*

• If N is prime, Zp* contains {1,2, 3, ... p-1} 

• So Z5* contains {1,2,3,4} 

• 0 is excluded because it has no inverse 



The Group Z10*

• Z10* contains {1, 3, 7, 9} 

• 0, 2, 4, 5, 6, 8 are excluded 

• Because they have no inverse 

• Because they have a common factor with 10  

• They aren't co-prime with 10



Euler's Totient
• How many elements are in the group Zn*? 

• When n is not prime, but the product of 
several prime numbers 

• n = p1 ✖ p2 ✖ ... ✖ pm  

• ϕ(n) = (p1 - 1) ✖ (p2 - 1) ✖ ... ✖ (pm - 1) 

• For Z10*  

• n = 10 = 2 ✖ 5 

• ϕ(10) = 1 ✖ 4 : 4 elements in Z10* 



The RSA Trapdoor 
Permutation



RSA Parameters

• n is the modulus 

• Product of two primes p and q 

• e is the public exponent 

• In practice, usually 65537 

• Public key: (n, e) 

• Private key: p and other values easily derived 
from it



Trapdoor Permutation

• x is the plaintext message 

• y is the ciphertext 

Encryption:     y = xe mod n   
Decryption:     x = yd mod n   

• d is the decryption key 

• calculated from p and q



Calculating d

•  ed = 1 mod ϕ(n) 

• Decryption:   x = yd mod n 
        = (xe)d mod n 
        = xed mod n 
        = x mod n 
       = x



Why mod ϕ(n) ?

• Fermat's Little Theorem (aka Euler's Theorem) 

• Stated by Fermat in 1640 without proof 

• Proven by Euler in 1736



Example: n=10



Example: n = 10

• 10 = 2 * 5; p = 2, q = 5 

• ϕ = (p - 1) (q - 1) = 1 * 4 = 4 elements in group 

• 3 is a generator of the group (see next slides)
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n=10; x=3

33 = 27 mod 10 
    = 7

34 = 81 mod 10 
    = 1



• Z10* contains {1, 3, 7, 9}  

• 4 elements 

• 3 is a generator of the group 

• Although n is 10, the powers of 3 repeat with a 
cycle of 4 (ϕ(n) ) 

• Encrypt by raising x to power e, forming y 

• Decrypt by raising y to power d, returning x

Powers of 3 31 mod 10 = 3 
32 mod 10 = 9 
33 mod 10 = 7 
34 mod 10 = 1 
35 mod 10 = 3



• Z10* contains {1, 3, 7, 9}  

• 4 elements 

• p = 2 and q = 5 

• ϕ(n) = (p-1)(q-1) = 1x4 = 4  

• ed = 1 mod ϕ(n)  

• For e = 3, d = 3

Finding d 
n=10; e=3

3x1 mod 4 = 3 
3x2 mod 4 = 2 
3x3 mod 4 = 1



• x is the plaintext message (3) 

• y is the ciphertext 
Encryption:       y = xe mod n    
           = 33 mod 10    
           = 27 mod 10   
           = 7   
Decryption:       x  = yd mod n  
       = 73 mod 10  
       = 343 mod 10  
       = 3

n=10; x=3; e=3; d=7



Example: n=14



2

n=14; x=3

0

31 = 3

1

3
4

5
67

13

8

12

9

11
10

2
0

32 = 9

1

3
4

5
67

13

8

12

9

11
10



2

n=14; x=3

0

33 = 27 mod 14 
    = 13

1

3
4

5
67

13

8

12

9

11
10

2
0

34 = 81 mod 14 
    = 11

1

3
4

5
67

13

8

12

9

11
10



2

n=14; x=3

0

35 = 243

1

3
4

5
67

13

8

12

9

11
10

2
0

36 = 729

1

3
4

5
67

13

8

12

9

11
10



• Z14* contains  
{1, 3, 5, 9, 11, 13}  

• 6 elements (ϕ(n) ) 

• 3 is a generator of the group

Powers of 3
31 mod 14 = 3 
32 mod 14 = 9 
33 mod 14 = 13 
34 mod 14 = 11 
35 mod 14 = 5 
36 mod 14 = 1



• Z14* contains  
{1, 3, 5, 9, 11, 13}  

• 6 elements 

• p = 2 and q = 7 

• ϕ(n) = (p-1)(q-1) = 1x6 = 6  

• ed = 1 mod ϕ(n)  

• For e = 5, d = 5

Finding d 
n=14; x=3; e=5

5x1 mod 6 = 5 
5x2 mod 6 = 4 
5x3 mod 6 = 3 
5x4 mod 6 = 2 
5x5 mod 6 = 1



• x is the plaintext message (3) 

• y is the ciphertext 

Encryption:     y = xe mod n    
           = 35 mod 14   
           = 243 mod 14   
           = 5   
Decryption:     x = yd mod n  
       = 55 mod 14  
       = 3125 mod 14  
       = 3

n=14; x=3; e=5; d=5



RSA Key Generation and 
Security



Key Generation

• Pick random primes p and q 

• Calculate ϕ(n) from p and q 

• Pick e 

• Calculate d (inverse of e)



RSA in Python 3 
Commands

python3 -m pip install pycryptodome

python3 

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

key = RSA.generate(2048)

plaintext = b"encrypt this message"

cipher_rsa = PKCS1_OAEP.new(key)

ciphertext = cipher_rsa.encrypt(plaintext)

decrypted = cipher_rsa.decrypt(ciphertext)

print("Ciphertext:", ciphertext)

print("Decrypted:", decrypted)



RSA Encryption and Decryption in Python 3



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl31

Speed of Calculations

• Encryption is fastest 
• Decryption is much slower 
• Key generation is slowest



RSA in Python 3 
Commands

from Crypto.PublicKey import RSA

import time

for i in range(5):

  keylen = 2048 * (2 ** i)

  t0 = time.time()

  key = RSA.generate(keylen)

  t1 = time.time() - t0

  print("Key length:", keylen, "Time:", t1)



Key Generation Times



Encrypting with RSA



Used with AES

• RSA typically not used to encrypt plaintext 
directly 

• RSA is used to encrypt an AES private key



Textbook RSA

• Plaintext converted to ASCII bytes 

• Placed in x 

• RSA used to compute y = xe mod n



Malleability
• Encrypt two plaintext messages x1 and x2 

• y1 = x1e mod n  

• y2 = x2e mod n 

• Consider the plaintext (x1)(x2) 

• Multiplying x1 and x2 together 

• y = (x1e mod n)(x2e mod n) = (y1)(y2) 

•  An attacker can create valid ciphertext without 
the key



Strong RSA Encryption: 
OAEP

• Optimal Asymmetric Encryption Padding 

• Padded plaintext is as long as n 

• Includes extra data and randomness





PKCS#1 v1.5

• An old method created by RSA 

• Message m is padded to 

• 0x00||0x02||r||0x00||m 

• Where r is a random string 

• Much less secure than OAEP 

• Used in many systems 
• https://crypto.stackexchange.com/questions/66521/why-does-

adding-pkcs1-v1-5-padding-make-rsa-encryption-non-deterministic



Signing with RSA



Digital Signatures
• Sign a message x with y = xd mod n  

• No one can forge the signature because d is 
secret 

• Everyone can verify the signature using e 

• x = ye mod n  

• Notice that x is not secret 

• Signatures prevent forgeries, they don't 
provide confidentiality



Signing a Hash

• Signing long messages is slow and 
uncommon 

• Typically the message is hashed 

• Then the hash is signed



Textbook RSA Signatures

• Sign a message x with y = xd mod n  

• Attacker can forge signatures 

• For x =0, 1, or n - 1



Blinding Attack
• You want to get the signature for message M 

• Which the targeted user would never 
willingly sign 

• Find a value R such that ReM mod n 

• Is a message the user will sign 

• That signature S is (ReM)d mod n 

• = RedMd mod n = RMd mod n 

• The signature we want is Md mod n = S/R



The PSS Signature Standard
• Probabilistic Signature Standard 

• Makes signatures more secure, the way OAEP makes 
encryption more secure 

• Combines the message with random and fixed bits



Full Domain Hash 
Signatures (FDH)

• The simplest scheme 

• x = Hash(message) 

• Signature y = xe mod n



FDH v. PSS

• PSS came later 

• More proof of theoretical security 

• Because of added randomness 

• But in practice they are similar in security 

• But PSS is safer against fault attacks 

• Explained later



RSA Implementations



Just Use Libraries

• Much easier and safer than writing your own 
implementation



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Consider RSA with a 1024-bit key 
• We need to calculate xe where e is 1024 

bits long 
• x * x * x * x ....      21024 multiplications 
• Competely impossible -- we can't even 

crack a 72-bit key yet (272 calculations)

51



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Use memory to save time 
• Do these ten multiplications 

• x2 = x * x 
• x4 = x2 * x2 
• x8 = x4 * x4 
• x16 = x8 * x8 
• ... 
• x1024 = x512 * x512 
• ... 

• Combine the results to make any exponent

52



Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• With this trick, a 1024-bit exponent can be 
calculated with only 1536 multiplications 

• But each number being multiplied is 1024 
bits long, so it still takes a lot of CPU

53



Side-Channel Attacks

• The speedup from square-and-multiply means 
that exponent bits of 1 take more time than 
exponent bits of 0 

• Measuring power consumption or timing can 
leak out information about the key 

• Few libraries are protected from such attacks



• EverCrypt -- a library immune to timing attacks 

• From Microsoft research 

• Link Ch 10b



Small e for Faster 
Encryption

• Encryption: y = xe mod n 

• Decryption: x = yd mod n 

• Choosing small e makes encryption faster, but 
decryption slower



Chinese Remainder 
Theorem

• Replaces one operation mod n 

• Encryption: y = xe mod n 

• With two operations mod p and q 

• Making RSA four times faster



How Things Can Go 
Wrong



Bellecore Attack on  
RSA-CRT

• Fault injection causes the CPU to make 
errors 

• Alter the power supply  

• or hit chips with a laser pulse 

• Can break deterministic schemes like CRT 

• But not ones including randomness like PSS




