CNIT 141
Cryptography for Computer Networks

Serious
Cryptography

A Practical lntroduction
to Modem Encryption

10.RSA

Updated 11-6-23

Topics

e The Math Behind RSA

e The RSA Trapdoor Permutation

e RSA Key Generation and Security
e Encrypting with RSA

e Signing with RSA

e RSA Implementations

e How Things Can Go Wrong

The Math Behind RSA

The Group Zn*

e |Integers modulo N
e Must contain an identity element: 1
e Fach member must have an inverse
e So zero is excluded
e But Z4* contains {1,3}
¢ 2 has no inverse

e Because 4 is a multiple of 2

The Group Zn*

e If N is prime, Zp* contains {1,2, 3, ... p-1}
e S0 Zs* contains {1,2,3,4}
e 0 iIs excluded because It has no Iinverse

The Group Z10*

e Z10* contains {1, 3, 7, 9}
e 0,2, 4,5, 06, 8 are excluded
e Because they have no inverse
e Because they have a common factor with 10
e They aren't co-prime with 10

Euler's Totient

How many elements are in the group Zn*?

e \When n is not prime, but the product of
several prime numbers

O N=pP1%P2%..%Pm

e p(n)=(pP1-1)%(p2-1)%...%x (Pm- 1)

For Z1o*
*n=10=2x5
e $(10) =1 x4 : 4 elements in Z1o*

The RSA Trapdoor
Permutation

RSA Parameters

e nis the modulus

e Product of two primes p and q
e e is the public exponent

e |n practice, usually 65537
e Public key: (n, e)

e Private key: p and other values easily derived
from it

Trapdoor Permutation

® x Is the plaintext message
e y is the ciphertext

Encryption: ¥ = Xx¢ mod n
Decryption: X = y9d mod n
® dis the decryption key
e calculated from p and q

Calculating d

e ed=1mod ¢(n)

® Decryption: X =Yyd mod n
= (x¢)d mod n
= xed mod n
=X mod n
= X

Why mod ¢(n) ?

a?™ =1 (mod n).

e Fermat's Little Theorem (aka Euler's Theorem)
e Stated by Fermat in 1640 without proof
e Proven by Euler in 1736

Example: n=10

Example: n =10

e 10=2%5;p=2,9g=5
ed=(p-1)(q-1)=17"4=4 elements in group
e 3 Is a generator of the group (see next slides)

Powers of 3 3 mod10=3
32 mod10=9
33mod 10 =7

e Z10" contains {1, 3, 7, 9} 3*mod 10 =1

e 4 elements 3°mod 10 =3

e 3 is a generator of the group

e Although nis 10, the powers of 3 repeat with a
cycle of 4 (p(n))

e Encrypt by raising x to power e, forming y
e Decrypt by raising y to power d, returning x

Finding d
n=10: e=3

e Z1o* contains {1, 3, 7, 9}

e 4 elements 3x1 mod 4 =3

ep=2andgq=5 3x2 mod 4 =2
o d(n) = (p-1)(g-1)=1x4=4 [Sx3mod4=1

e ed =1 mod ¢(n)
efFore=3,d=3

n=10: x=3: e=3; d=7/

® x is the plaintext message (3)
® y is the ciphertext

Encryption: y =xemod n
= 3mod 10
=27 mod 10
=7

Decryption: X =ydmod n
=73 mod 10
=343 mod 10
=3

Example: n=14

12
11

10

2 12
(3) 11

4 10
5

12 2 12 2
11 3) (11 3
10 4 10 4

Powers of 3

o Z14* contains
1,3,5,9, 11, 13}

e 6 elements (Pp(n))

3'mod 14 =3
32mod 14 =9
3 mod 14 = 13
3*mod 14 = 11
3mod 14 =95
3°mod 14 = 1

e 3 is a generator of the group

Finding d

n=14; x=3; e=5
e Z14* contains
11,3,5,9, 1,13} 5x1 mod 6 =5
e 6 elements 5x2 mod 6 = 4
ep=2and q=7 gx2m032=g
X4 Mo —

e ed =1 mod ¢(n)
efFore=5 d=5

n=14: x=3; e=5: d=5

® x is the plaintext message (3)

® y is the ciphertext

Encryption: ¥ = Xx¢ mod n
= 3°mod 14
=243 mod 14
=5

Decryption: X = y9d mod n
= 5" mod 14
= 3125 mod 14
=3

RSA Key Generation and
Security

Key Generation

¢ Pick random primes p and q
e Calculate ¢(n) from p and q
e Pick e

e Calculate d (inverse of e)

RSA in Python 3
Commands

python3 -m pip install pycryptodome
python3

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1l OAEP
key = RSA.generate(2048)

plaintext = b"encrypt this message”

cipher rsa PKCS1 OAEP.new(key)

ciphertext cipher rsa.encrypt(plaintext)
decrypted = cipher rsa.decrypt(ciphertext)
print ("Ciphertext:", ciphertext)

print("Decrypted:", decrypted)

RSA Encryption and Decryption in Python 3

>>> from Crypto.PublicKey import RSA

>>> from Crypto.Cipher import PKCS1_OAEP

>>>

>>> key = RSA.generate(2048)

>>>

>>> plaintext = b"encrypt this message"

>>> cipher_rsa = PKCS1_OAEP.new(key)

>>>

>>> ciphertext = cipher_rsa.encrypt(plaintext)

>>> decrypted = cipher_rsa.decrypt(ciphertext)

>>>

>>> print("Ciphertext:", ciphertext)

Ciphertext: b'[\xe5\xb2\x1fYR\xa5\x05\xfa\x04\xf8\x08\x8e\x0e}\xle\x98\xc8w\xc5\
xadX\xff\xa?\xda\xbeP6\x8e7]1GU\xfO\x83\xfb\xd3.D\x88\xal\xc3\xcc\xd2\xd6\x97|\xa
3gX\xclt\x10\xbf>P\x1b\x95\xcf\x0cr\xfd\x8f\xea\xc8\xc3\xd2\x93\xf4R\x94\xd2\x%e
\x0c\xaf\x15\xfe$\x8d\x93\xd2\x7f\xcsaK\xel(+\xdc\x0Bc\x8a\xd3\n\xcb\n#\xlaC\xel"
\xcé6\xch\'U\'"\x%e\xdb|\xd7\xdd\\m"\x05\x1c\xac\xb2\xd8R\xad\x15\n\x00\x8a\xfcQ\x
cB@\xa47\xcd\x1laD{\xab65\n2\x9e\x8a\x9f/\xba\xc9\x109\xfob\xd9E\x11\x87%v\xec\xfe\
xa3\x8d\x00\x91X\xb2\xfé6{\x15a\xac\xeb\xb7\x88\xe6RM\xa4\xfd\x9f2\xb0\xeb3H\x1b&
\xec\t-c2\xd4\xf8\x9b\x19<\xad0\x90\xccd\x9b\xa7RBf\x14\x9b\xc8\xdd\xc@\x000P\xbl
-\x1cul\xa2b\xa8\x8eT9c\xf8\x06\x9b\xee\xaa\x93\x9e\r\x05;\x9cS\x8c\xcb\xb8\xa3\x
ba|\x8a\x1f\x92\x93a.\xc9\xa7\x8f2(;\x8a\x86\x03\xdf\x0b\x01"'

>>> print("Decrypted:", decrypted)

Decrypted: b'encrypt this message’

31

Speed of Calculations

LENGTH: 1024
0.150621891022
0.026349067688
0.0133030414581

sec. for one RSA key generation
sec. for 400 RSA encryptions
sec. for 5 RSA decryptions

Encryption is fastest

Decryption is much slower
Key generation is slowest

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

RSA in Python 3
Commands

from Crypto.PublicKey import RSA
import time
for 1 1n range(5):

keylen = 2048 * (2 ** 1)

t0 = time.time()

key = RSA.generate(keylen)

tl = time.time() - tO

print("Key length:", keylen, "Time:", t1)

Key Generation Times

>>> from Crypto.PublicKey import RSA
>>> 1mport time
>>> for 1 in range(5):
keylen = 2048 % (2 *x 1)
t0 = time.time()
key = RSA.generate(keylen)
tl = time.time() - tO
print("Key length:", keylen, "Time:", t1)

Key length: 2048 Time: 0.36420106887817383
Key length: 4096 Time: 1.2548778057098389
Key length: 8192 Time: 81.37016312080383
Key length: 16384 Time: 1491.3719861507416
Key length: 32768 Time: 1379.126795053482
>>>

Encrypting with RSA

Used with AES

e RSA typically not used to encrypt plaintext
directly

e RSA is used to encrypt an AES private key

Textbook RSA

e Plaintext converted to ASCII bytes
e Placed in x
e RSA used to compute y = xe mod n

Malleability

e Encrypt two plaintext messages x7 and x2
®* y1=Xx1¢mod n
® y2= X2 mod n
e Consider the plaintext (x1)(x2)
e Multiplying x7 and x2together
e yv = (x1¢ mod n)(x2¢ mod n) = (y1)(y2)

e An attacker can create valid ciphertext without
the key

Strong RSA Encryption:
OAEP

e Optimal Asymmetric Encryption Padding
e Padded plaintext is as long as n

¢ |ncludes extra data and randomness

Y ——
~

=

Padding

algorithm

P

RSA(n,e)

l"_—_-l-__-'l
O

L——————————J

Sg——
Figure 10-1: Encrypting a symmetric key, K, with RSA using (n, e) as a public key

Algorithm | edit]
In the diagram,

e nis the number of bits in the RSA modulus.

ko and kq are integers fixed by the protocol.

m is the plaintext message, an (n — kg — kq)-bit string

G and H are random oracles such as cryptographic hash functions.

@ is an xor operation.
To encode,

1. messages are padded with kq zeros to be n — kg bits in length.
2. ris a randomly generated kop-bit string

3. G expands the ky bits of rto n — kg bits.

4. X=m00..0 ® G(n

5. Hreduces the n — kg bits of X'to kg bits.

6. Y=r® H(X

7. The output is X1l Y where Xis shown in the diagram as the leftmost block and Y as the rightmost block.

To decode,

1. recover the random string as r= Y ® H(X)
2. recover the message as m00..0 = X P G(1)

m 000

- k1

n-k0@ v
Y
X

OAERP is a Feistel network

il
<@
?

+ kO

PKCS#1 v1.5

e An old method created by RSA
e Message m is padded to

e 0x00||0x02]|r||0Ox00||m

e \Where ris a random string
e Much less secure than OAEP

e Used in many systems

e https://crypto.stackexchange.com/questions/66521/why-does-
adding-pkcs1-v1-5-padding-make-rsa-encryption-non-deterministic

Signing with RSA

Digital Signatures

¢ Sign a message x with y = x9d mod n

e No one can forge the signature because d is
secret

e Everyone can verify the signature using e
e X=yemodn
e Notice that x is not secret

e Signhatures prevent forgeries, they don't
provide confidentiality

Signing a Hash

e Signhing long messages is slow and
uncommon

e [ypically the message is hashed
e Then the hash Is signed

Textbook RSA Signatures

¢ Sign a message x with y = x4d mod n
e Attacker can forge signatures

e Forx=0,1,0orn-1

Blinding Attack

e You want to get the signature for message M

e \Which the targeted user would never
willingly sign

e Find a value R such that ReM mod n
¢ |s a message the user will sign
e That signature S is (ReM)d mod n
e = RedjJ[d mod n = RM? mod n

e The signature we want is Md mod n = S/R

The PSS Signature Standard

e Probabilistic Signature Standard

e Makes signatures more secure, the way OAEP makes
encryption more secure

e Combines the message with random and fixed bits

[—— 1 e o
I I | (I
| Hash(M) | | |
I I | (I
o e s = Padd; I .
il e RSA(n,d) 3
algorithm e 3 | = |
I | I
I .
I | I
I | I
e o of TR—

Figure 10-3: Signing a message, M, with RSA and with the PSS standard, where (n, d) is the private key

Full Domain Hash
Signatures (FDH)

¢ The simplest scheme
¢ x = Hash(message)

e Sighature y = xe mod n

Figure 10-4: Signing a message with RSA using the Full Domain Hash technique

- =

Q

-

=
e o e e e e - - o
peEeTEEmEaEmEsmemen

W
A ————

FDH v. PSS

e PSS came later

e More proof of theoretical security

e Because of added randomness
e But in practice they are similar in security
e But PSS is safer against fault attacks

e Explained later

RSA Implementations

Just Use Libraries

e Much easier and safer than writing your own
Implementation

Square-and-Multiply

y = €k, (x) =x" mod n (encryption)

X =dy, (y) = y mod n (decryption)

* Consider RSA with a 1024-bit key

* \We need to calculate x¢ where e is 1024
bits long

* X*X*X*X ... 21024 multiplications

* Competely impossible -- we can't even
crack a 72-bit key yet (272 calculations)

o1 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

* Use memory to save time
* Do these ten multiplications

°* X2=X%X

e X4 =x2 * x2
e Xx8=x4*x4
* X16 = x8 * x8

* x1024 = x512 * x512

* Combine the results to make any exponent

52
Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

* With this trick, a 1024-bit exponent can be
calculated with only 1536 multiplications

* But each number being multiplied is 1024
bits long, so it still takes a lot of CPU

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Side-Channel Attacks

e The speedup from square-and-multiply means
that exponent bits of 1 take more time than
exponent bits of O

e Measuring power consumption or timing can
leak out information about the key

* Few libraries are protected from such attacks

Cryptography That Can’t Be Hacked

e EverCrypt -- a library immune to timing attacks

e From Microsoft research
e Link Ch 10b

the purpose of the entire encryption,” said Bhargavan. Such “side-

channel attacks” were beh the most notorious hacking

attacks in recent years, including the Lucky Thirteen attack. The

researchers proved that EverCrypt never leaks information in ways

that can be exploited by these types of timing attacks.

Small e for Faster
Encryption

e Encryption: y = x¢e mod n
e Decryption: x = y9 mod n

e Choosing small e makes encryption faster, but
decryption slower

Chinese Remainder
Theorem

¢ Replaces one operation mod n
e Encryption: y = x¢e mod n

e With two operations mod p and q
e Making RSA four times faster

X=X, % qx(1/qg mod p) +x, x px(1/p mod q) mod n

How Things Can Go
Wrong

Bellecore Attack on
RSA-CRT

® Fault injection causes the CPU to make
errors

e Alter the power supply
e or hit chips with a laser pulse
® Can break deterministic schemes like CRT
e But not ones including randomness like PSS

