
CNIT 141

Cryptography for Computer Networks

10.RSA

Updated 11-6-23

Topics

• The Math Behind RSA

• The RSA Trapdoor Permutation

• RSA Key Generation and Security

• Encrypting with RSA

• Signing with RSA

• RSA Implementations

• How Things Can Go Wrong

The Math Behind RSA

The Group ZN*

• Integers modulo N

• Must contain an identity element: 1

• Each member must have an inverse

• So zero is excluded

• But Z4* contains {1,3}

• 2 has no inverse

• Because 4 is a multiple of 2

The Group ZN*

• If N is prime, Zp* contains {1,2, 3, ... p-1}

• So Z5* contains {1,2,3,4}

• 0 is excluded because it has no inverse

The Group Z10*

• Z10* contains {1, 3, 7, 9}

• 0, 2, 4, 5, 6, 8 are excluded

• Because they have no inverse

• Because they have a common factor with 10

• They aren't co-prime with 10

Euler's Totient
• How many elements are in the group Zn*?

• When n is not prime, but the product of
several prime numbers

• n = p1 ✖︎ p2 ✖︎ ... ✖︎ pm

• ϕ(n) = (p1 - 1) ✖︎ (p2 - 1) ✖︎ ... ✖︎ (pm - 1)

• For Z10*

• n = 10 = 2 ✖︎ 5

• ϕ(10) = 1 ✖︎ 4 : 4 elements in Z10*

The RSA Trapdoor
Permutation

RSA Parameters

• n is the modulus

• Product of two primes p and q

• e is the public exponent

• In practice, usually 65537

• Public key: (n, e)

• Private key: p and other values easily derived
from it

Trapdoor Permutation

• x is the plaintext message

• y is the ciphertext

Encryption: y = xe mod n

Decryption: x = yd mod n

• d is the decryption key

• calculated from p and q

Calculating d

• ed = 1 mod ϕ(n)

• Decryption: x	 = yd mod n 
		 	 	 	 	 	 = (xe)d mod n 
		 	 	 	 	 	 = xed mod n 
		 	 	 	 	 	 = x mod n 
		 	 	 	 	 	 = x

Why mod ϕ(n) ?

• Fermat's Little Theorem (aka Euler's Theorem)

• Stated by Fermat in 1640 without proof

• Proven by Euler in 1736

Example: n=10

Example: n = 10

• 10 = 2 * 5; p = 2, q = 5

• ϕ = (p - 1) (q - 1) = 1 * 4 = 4 elements in group

• 3 is a generator of the group (see next slides)

n=10; x=3

0

5

1

4

3

2

9

6

7

8

0

5

1

4

3

2

9

6

7

8
31 = 3 32 = 9

0

5

1

4

3

2

9

6

7

8

0

5

1

4

3

2

9

6

7

8

n=10; x=3

33 = 27 mod 10
 = 7

34 = 81 mod 10
 = 1

• Z10* contains {1, 3, 7, 9}

• 4 elements

• 3 is a generator of the group

• Although n is 10, the powers of 3 repeat with a
cycle of 4 (ϕ(n))

• Encrypt by raising x to power e, forming y

• Decrypt by raising y to power d, returning x

Powers of 3 31 mod 10 = 3 
32 mod 10 = 9 
33 mod 10 = 7 
34 mod 10 = 1
35 mod 10 = 3

• Z10* contains {1, 3, 7, 9}

• 4 elements

• p = 2 and q = 5

• ϕ(n) = (p-1)(q-1) = 1x4 = 4

• ed = 1 mod ϕ(n)

• For e = 3, d = 3

Finding d

n=10; e=3

3x1 mod 4 = 3 
3x2 mod 4 = 2 
3x3 mod 4 = 1

• x is the plaintext message (3)

• y is the ciphertext

Encryption: y	= xe mod n  
	 	 	 		 	 	 = 33 mod 10  
	 	 	 		 	 	 = 27 mod 10  
	 	 	 		 	 	 = 7

Decryption: x 	= yd mod n  
	 	 	 	 	 	 	 = 73 mod 10  
	 	 	 	 	 	 	 = 343 mod 10  
	 	 	 	 	 	 	 = 3

n=10; x=3; e=3; d=7

Example: n=14

2

n=14; x=3

0

31 = 3

1

3
4

5
67

13

8

12

9

11
10

2
0

32 = 9

1

3
4

5
67

13

8

12

9

11
10

2

n=14; x=3

0

33 = 27 mod 14
 = 13

1

3
4

5
67

13

8

12

9

11
10

2
0

34 = 81 mod 14
 = 11

1

3
4

5
67

13

8

12

9

11
10

2

n=14; x=3

0

35 = 243

1

3
4

5
67

13

8

12

9

11
10

2
0

36 = 729

1

3
4

5
67

13

8

12

9

11
10

• Z14* contains  
{1, 3, 5, 9, 11, 13}

• 6 elements (ϕ(n))

• 3 is a generator of the group

Powers of 3
31 mod 14 = 3 
32 mod 14 = 9 
33 mod 14 = 13 
34 mod 14 = 11
35 mod 14 = 5
36 mod 14 = 1

• Z14* contains  
{1, 3, 5, 9, 11, 13}

• 6 elements

• p = 2 and q = 7

• ϕ(n) = (p-1)(q-1) = 1x6 = 6

• ed = 1 mod ϕ(n)

• For e = 5, d = 5

Finding d

n=14; x=3; e=5

5x1 mod 6 = 5 
5x2 mod 6 = 4 
5x3 mod 6 = 3 
5x4 mod 6 = 2 
5x5 mod 6 = 1

• x is the plaintext message (3)

• y is the ciphertext

Encryption: y = xe mod n  
	 	 	 		 	 	 = 35 mod 14  
	 	 	 		 	 	 = 243 mod 14  
	 	 	 		 	 	 = 5

Decryption: x = yd mod n  
	 	 	 	 	 	 	 = 55 mod 14  
	 	 	 	 	 	 	 = 3125 mod 14  
	 	 	 	 	 	 	 = 3

n=14; x=3; e=5; d=5

RSA Key Generation and
Security

Key Generation

• Pick random primes p and q

• Calculate ϕ(n) from p and q

• Pick e

• Calculate d (inverse of e)

RSA in Python 3

Commands

python3 -m pip install pycryptodome

python3

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

key = RSA.generate(2048)

plaintext = b"encrypt this message"

cipher_rsa = PKCS1_OAEP.new(key)

ciphertext = cipher_rsa.encrypt(plaintext)

decrypted = cipher_rsa.decrypt(ciphertext)

print("Ciphertext:", ciphertext)

print("Decrypted:", decrypted)

RSA Encryption and Decryption in Python 3

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl31

Speed of Calculations

• Encryption is fastest

• Decryption is much slower

• Key generation is slowest

RSA in Python 3

Commands

from Crypto.PublicKey import RSA

import time

for i in range(5):

 keylen = 2048 * (2 ** i)

 t0 = time.time()

 key = RSA.generate(keylen)

 t1 = time.time() - t0

 print("Key length:", keylen, "Time:", t1)

Key Generation Times

Encrypting with RSA

Used with AES

• RSA typically not used to encrypt plaintext
directly

• RSA is used to encrypt an AES private key

Textbook RSA

• Plaintext converted to ASCII bytes

• Placed in x

• RSA used to compute y = xe mod n

Malleability
• Encrypt two plaintext messages x1 and x2

• y1 = x1e mod n

• y2 = x2e mod n

• Consider the plaintext (x1)(x2)

• Multiplying x1 and x2 together

• y = (x1e mod n)(x2e mod n) = (y1)(y2)

• An attacker can create valid ciphertext without
the key

Strong RSA Encryption:
OAEP

• Optimal Asymmetric Encryption Padding

• Padded plaintext is as long as n

• Includes extra data and randomness

PKCS#1 v1.5

• An old method created by RSA

• Message m is padded to

• 0x00||0x02||r||0x00||m

• Where r is a random string

• Much less secure than OAEP

• Used in many systems

• https://crypto.stackexchange.com/questions/66521/why-does-

adding-pkcs1-v1-5-padding-make-rsa-encryption-non-deterministic

Signing with RSA

Digital Signatures
• Sign a message x with y = xd mod n

• No one can forge the signature because d is
secret

• Everyone can verify the signature using e

• x = ye mod n

• Notice that x is not secret

• Signatures prevent forgeries, they don't
provide confidentiality

Signing a Hash

• Signing long messages is slow and
uncommon

• Typically the message is hashed

• Then the hash is signed

Textbook RSA Signatures

• Sign a message x with y = xd mod n

• Attacker can forge signatures

• For x =0, 1, or n - 1

Blinding Attack
• You want to get the signature for message M

• Which the targeted user would never
willingly sign

• Find a value R such that ReM mod n

• Is a message the user will sign

• That signature S is (ReM)d mod n

• = RedMd mod n = RMd mod n

• The signature we want is Md mod n = S/R

The PSS Signature Standard
• Probabilistic Signature Standard

• Makes signatures more secure, the way OAEP makes
encryption more secure

• Combines the message with random and fixed bits

Full Domain Hash
Signatures (FDH)

• The simplest scheme

• x = Hash(message)

• Signature y = xe mod n

FDH v. PSS

• PSS came later

• More proof of theoretical security

• Because of added randomness

• But in practice they are similar in security

• But PSS is safer against fault attacks

• Explained later

RSA Implementations

Just Use Libraries

• Much easier and safer than writing your own
implementation

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Consider RSA with a 1024-bit key

• We need to calculate xe where e is 1024

bits long

• x * x * x * x 21024 multiplications

• Competely impossible -- we can't even

crack a 72-bit key yet (272 calculations)

51

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Use memory to save time

• Do these ten multiplications

• x2 = x * x

• x4 = x2 * x2

• x8 = x4 * x4

• x16 = x8 * x8

• ...

• x1024 = x512 * x512

• ...

• Combine the results to make any exponent

52

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• With this trick, a 1024-bit exponent can be
calculated with only 1536 multiplications

• But each number being multiplied is 1024
bits long, so it still takes a lot of CPU

53

Side-Channel Attacks

• The speedup from square-and-multiply means
that exponent bits of 1 take more time than
exponent bits of 0

• Measuring power consumption or timing can
leak out information about the key

• Few libraries are protected from such attacks

• EverCrypt -- a library immune to timing attacks

• From Microsoft research

• Link Ch 10b

Small e for Faster
Encryption

• Encryption: y = xe mod n

• Decryption: x = yd mod n

• Choosing small e makes encryption faster, but
decryption slower

Chinese Remainder
Theorem

• Replaces one operation mod n

• Encryption: y = xe mod n

• With two operations mod p and q

• Making RSA four times faster

How Things Can Go
Wrong

Bellecore Attack on  
RSA-CRT

• Fault injection causes the CPU to make
errors

• Alter the power supply

• or hit chips with a laser pulse

• Can break deterministic schemes like CRT

• But not ones including randomness like PSS

