
CNIT 129S: Securing
Web Applications

Ch 9: Attacking Data Stores
Part 2 of 2

Bypassing Filters

Avoiding Blocked
Characters

• App removes or encodes some characters

• Single quotation mark is not needed for
injection into a numerical field

• You can also use string functions to
dynamically construct a string containing
filtered characters

CHR or CHAR Function

• These queries work on Oracle and MS-SQL,
respectively

Comment Symbol Blocked
• Code is

SELECT * from users WHERE name='uname'

• Try injecting this value for name:

' or 1=1 --

• To create

SELECT * from users WHERE name='' or 1=1 --'

• But the "--' is blocked

Correct Syntax Without
Comment

• Injecting this value for name:

' or 'a'='a

• To create

SELECT * from users WHERE name=''
or 'a'='a'

Circumventing Simple
Validation

• If "SELECT" is blocked, try these bypasses:

Using SQL Comments
• If spaces are blocked, use comments instead

• MySQL allows comments within keywords

Second-Order SQL Injection

• Many applications handle data safely when it is
first entered into the database

• But it may later be processed in unsafe ways

App Adds a Second Quote
• Register an account with this name:

foo'

• The correct way to insert that value is by adding a
second quote (link Ch 2a)

INSERT INTO users (username,
password, ID, privs) VALUES
('foo''', 'secret', 2248, 1)

Password Change

• Requires user to input old password, and
compares it to the password retrieved with:

SELECT password FROM users WHERE
username = 'foo''

• This is a syntax error.

Exploit
• Register a new user with this name:

' or 1 in (SELECT password FROM users
WHERE username = 'admin')--

• Perform a password change, and MS-SQL will
return this error, exposing the administrator
password

Advanced Exploitation

• The previous attacks had a ready means of
exposing data

• Adding UNION to a query that returns the
results

• Returning data in an error message

Denial of Service

• Turn off an MS-SQL database

' shutdown--

• Drop table

' drop table users--

Retrieving Data as Numbers
• No strings fields may be vulnerable, because

single quotes are filtered

• Numeric fields are vulnerable, but only allow
you to retrieve numerical values

• Use functions to convert characters tonumbers

Using an Out-of-Band
Channel

• You can inject a query but you can't see the
results

• Some databases allow you to make a network
connection inside the query language

MS-SQL 2000 and Earlier

Oracle
• UTL_HTTP makes an HTTP request

• Attacker can use a netcat listener

Oracle
• DNS request is even less likely to be blocked

MySQL

• To retrieve the file, set up an SMB share on your
server

• Alowing anonymous write access

Leveraging the Operating
System

• Sometimes you can get the ability to execute shell
commands

• Such as by using a PHP shell

• Then you can use built-in commands like

• tftp, mail, telnet

• Or copy data into a file in the Web root so you can
retrive it with a browser

Conditional Responses:
"Blind SQL Injection"

• Suppose your query doesn't return any data you
can see, and

• You can't use an out-of-band channel

• You can still get data, if there's any detectable
behavior by the database that depends on your
query

Example

• Put in this text for username, and anything for
password

admin' --

• You'll be logged in as admin

True or False?

• This username will log in as admin:

admin' AND 1=1--

• This one will not log in

admin' AND 1=2--

Finding One Letter
• This username will log in as admin:

• This one will not log in

Inducing Conditional Errors
• On an Oracle database, this query will produce

an error if the account "DBSNMP" exists

• If it doesn't, the "1/0" will never be evaluated
and it won't cause an error

Does User "AAAAA" Exist?

Using Time Delays

• MS-SQL has a built-in WAITFOR command

• This query waits for 5 seconds if the current
database user is 'sa'

Conditional Delays
• You can ask a yes/no question and get the

answer from the delay

Testing Single Bits
• Using bitwise AND operator &

• And the POWER command

MySQL Delays

• Current versions have a sleep function

• For older versions (prior to 5.0.12), use
benchmark to repeat a calculation many times

Oracle
• No function to cause a delay, but you can use

URL_HTTP to connect to a non-existent server

• Causes a delay until the request times out

Oracle

• This query causes a timeout if the default Oracle
account "DBSNMP" exists

Beyond SQL Injection:
Escalating the Database

Attack

Further Attacks
• SQL injection lets you get the data in the

database, but you can go further

• If database is shared by other applications,
you may be able to access other application's
data

• Compromise the OS of the database server

• Pivot: use the DB server to attack other
servers from inside the network

Further Attacks
• Make network connections back out to your

own computer, to exfiltrate data and evade
IDS systems

• Extend database functionality by creating
user-defined functions

• You can reintroduce functionality that has
been removed or disabled

• Possible if you get database administrator
privileges

MS-SQL
• xp_cmdshell stored procedure

• Included by default

• Allows DBA (Database Administrator) to execute
shell commands

MS-SQL

• Other stored procedures also allow powerful
attacks

• xp_regread & xp_regwrite

Dealing with Default
Lockdowns

• MS-SQL 2005 and later disable xp_cmdshell by
default, but you can just enable it if you are DBA

MySQL
• load_file allows attacker to read a file

• "into outfile" allows attacker to write to a file

SQL Exploitation Tools

Algorithm

SQLMAP

Preventing SQL Injection

Blocking Apostrophes

• Won't stop injection into numerical fields

• If you allow apostrophes into data fields by
doubling them, you can have second-order SQL
injection vulnerabilities

Stored Procedures
• Developer defines a procedure

• Attacker can still inject with this password

• Resulting query

Parameterized Queries

Vulnerable Code
• User input inserted into a command, which is

parsed later to match quotes

Parameterized Version
• User input replaces placeholder "?"

• No parsing required, not vulnerable to SQLi

Provisos
• Use parameterized queries for EVERY query

• Not just the ones that are obviously user-
controllable

• Every item of data should be parameterized
• Be careful if user data changes table or column names

• Allow only values from a whitelist of known safe
values

• You cannot use parameter placeholders for other parts
of the query, such as SORT BY ASC or SORT BY DESC

• If they must be adjusted, use whitelisting

Defense in Depth
• Application should use low privileges when

accessing the database, not DBA

• Remove or disable unnecessary functions of DB

• Apply vendor patches

• Subscribe to vulnerability notification
services to work around new, unpatchable
vulnerabilities

Injecting into NoSQL

NoSQL

• Doesn't require structured data like SQL

• Fields must be defined in a Schema, as Text,
Number, etc.

• Keys and values can be arbitrarily defined

• A new and less mature technology than SQL

Injecting into MongoDB
• Example Login Code

Injection
• Log in with this username, and any password

Marcus'//

• Javascript function becomes this:

Another Injection
• Log in with this username, and any password

• This is always true (link Ch 9b)

Injecting into XPATH

• XML Data  
Store

Injection
• This query retrieves a stored credit card number

from a username and password

• This injection:

Finding XPATH Injection
Flaws

• These strings usually break the syntax

• These strings change behavior without breaking
syntax

Preventing XPATH Injection

• Filter inputs with a whitelist

• Remove these characters

LDAP

• Lightweight Directory Access Protocol (LDAP)

• Used to store names, phone numbers, email
addresses, etc.

• Used in Microsoft Active Directory

• Also in OpenLDAP

LDAP Queries
• Match a username

• Match any one of these conditions

• Match all of these conditions

LDAP Injection Limitations
• Possible, but less exploitable because

• Logical operators come before user-supplied
data, so attacker can't form "or 1=1"

• Directory attributes to be returned are hard-
coded and can't usually be manipulated

• Applications rarely return informative error
messages, so exploitation is "blind"

