
CNIT 129S: Securing
Web Applications

Ch 7: Attacking Session
Management

Session Management

• Enables application to identify a given user over
a number of different requests

• Ex: login, then later requests

• Fundamental security component

• A prime target for attackers

Session Management
• Potential consequences of session

management attacks

• A user can masquerade as another user

• Privilege escalation to administrator, owning
the entire application

• Can be as simple as incrementing the value of a
token

Wall of Sheep
• My Gmail was

hacked at
Defcon

• By stealing
and replaying
my session
cookie

• Using Hamster
and Ferret

The Need for State

Web 1.0

• Stateless

• Static pages

• No custom content

• No logging in

Logging In

• Allow user to register and log in

• Require a session to maintain the "state" of
being authenticated

• Otherwise user would have to log in to each
page

No Login

• Application with no login function still use
sessions

• Shopping basket

Session Token
• Server's first response contains a Set-Cookie:

header

• Each subsequent request from the client
contains the Cookie: header

Vulnerabilities

• Two categories

• Weakness in generation of session tokens

• Weakness in handling session tokens
throughout their life cycle

Finding the Real Session
Token

• Sometimes a platform like ASP.NET generates a
token but the app doesn't really use it

• To find a token, establish a session and then
replay a request

• Systematically remove each item you suspect
of being the real token

• Wait till response is no longer customized for
your session

Alternatives to Sessions

HTTP Authentication

• Basic, Digest, NTLM

• Pass credentials with every request in HTTP
headers

• Not via application-specific code

• Rarely used on Internet-based applications

Sessionless State
Mechanisms

• Application doesn't issue session tokens or
manage the state

• Transmit all data required to manage the state
via the client in a cookie or hidden form field

• Ex: ASP.NET ViewState

• Link Ch 7a

Securing View State
• Data must be protected, usually as a binary blob

that is encrypted or signed

• To prevent re-use on another machine

• ASP.NET View State uses Base64 and a hash
made from a Machine Authentication Code

• Includes the machine's MAC address

• Expiration time enforces session timeouts

Indicators of Sessionless
State Mechanisms

• Token-like data items >=100 bytes long

• New token-like item in response to every
request

• Data is encrypted (structureless) or signed
(structured accompanied by a few random
bytes)

• Application rejects attempts to submit the same
item with more than one request

Weaknesses inToken
Generation

Token Use Cases
• Password recovery tokens sent to user's email
address

• Tokens in hidden form fields to prevent cross-
site forgery attacks

• Tokens used to grant one-time access to
protected resources

• Persistent tokens used to "remember me"
• Tokens used to allow customers of shopping
application to see the status of an order

Unpredictability

• The security of the application depends on all
those tokens being unpredictable

Meaningful Tokens

• It's just hexadecimal ASCII for

• Easy to guess other token values, like
user=admin

ASCII

• 75 73 65 72

• u s e r

Components in Structured
Tokens

Common Encoding
Schemes

• XOR

• Base64

• Hexadecimal ASCII codes

Hack Steps
• Obtain a single token

• Modify it in systematic ways

• Change it one byte at a time, or one bit at a time

• Resubmit it to see if it's still accepted

• Some fields may be ignored

• Burp Intruder's "char frobber" function

Hack Steps
• Log in as several users at different times

• Record the tokens

• If you can, register similar usernames like A,
AA, AAA, AAAB, etc.

• Try similar series for other data, such as email
addresses

Hack Steps
• Analyze the tokens for correlations

• Look for encoding or obfuscation

• A series of repeating letters like AAA will
produce repeating encoded characters like zzz if
XOR is used

• Base64 often ends in = or ==

Hack Steps
• Use the patterns you've found to try guessing

tokens of other users

• Find a page that is session-dependent

• Use Burp Intruder to send many requests using
guessed tokens

• Monitor results to see if any pages load
correctly

iClickers

A Web app encodes "user=AAAA" as
"dXNlcj1BQUFB".

What encoding is this?

A. XOR
B. Base64
C. Hexadecimal
D. None of the above

A Web app encodes "user=AAAA" as
"cb9371cf1adcbc1c310ba57a9fbd4843".

What encoding is this?

A. XOR
B. Base64
C. Hexadecimal
D. None of the above

A Web app encodes "user=AAAA" as
"757365723d414141".

What encoding is this?

A. XOR
B. Base64
C. Hexadecimal
D. None of the above

A Web app encodes "user=AAAA" as
"3137213679050505".

What encoding is this?

A. XOR
B. Base64
C. Hexadecimal
D. None of the above

Predictable Tokens

Patterns
• From a sample of tokens, it may be

possible to predict valid tokens

• Commercial implementations such as
web servers or application platforms may
be more vulnerable

• Because it's easier to gather a large
sample of tokens, from your own test
system

Sequential Tokens

• Burp trying
sequential
payloads

• Winners
shown at to
the top

Three Sources of
Predictable Session Tokens

• Concealed sequences

• Time dependency

• Weak random number generation

Concealed Sequences
• This sequence

appears to be
Base64-encoded

• Decodes to the
gibberish on the
right

Hexadecimal Form

• Calculate difference
between sequential
tokens

• For negative
differences, add
0x10000000000 so it
starts with FF

Script to Decode

Generate Valid Tokens

Time Dependency
• Left number simply

increments by 1
each time

• Right number
moves up by a
varying value, as
shown on the right

Another Sample
• Ten minutes later

• First number has jumped
by 6

• Second number has
jumped by 539578

• Ten minutes = 600 sec =
600,000 milliseconds

Attack Steps
• Poll the server frequently to gather session

tokens

• When first number increases by more than 1,
there's another user in between

• We know the second number will be between
the two numbers we have

• Simply brute-force the value

Weak Random Number
Generation

• Jetty is a Java-based Web server

• Calculates pseudorandom session tokens with a
"linear congruential generator"

• Multiplies previous number by a constant, adds
another constant, truncates to 48 bits

• Given one value, all others can be predicted

PHP 5.3.2 and Earlier
• Session token generated from

• Client's IP address

• Epoch time at token creation

• Microseconds at token creation

• Linear congruential generator

phpwn

• The vulnerability was found in 2001

• But no one wrote a practical attack tool until
Samy Kamkar in 2010

• Link Ch 7b

Testing the Quality of
Randomness

Algorithm

Burp Sequencer

Results: Red Bits are Non-
Random

iClickers

Which type of token is the best?

A. Sequential
B. Random
C. Linear congruential
D. Time-based
E. None of the above

Which type of token is easiest to predict?

A. Sequential
B. Random
C. Linear congruential
D. Time-based
E. None of the above

Which type of token has a pattern that is not
easy to see from a series of samples?

A. Sequential
B. Random
C. Linear congruential
D. Time-based
E. None of the above

Encrypted Tokens

Design Goal
• Token built from meaningful content,

such as username

• Encrypted with a secret key not known to
the attacker

• Sounds good, but sometimes the
attacker can tamper with token's
meaningful values without decrypting
them

ECB Ciphers
• Electronic Code Book

• Input broken up into blocks, often 8 bytes long

• Symmetric encryption, no randomness

• Each input block encodes to a single output
block

• This preserves patterns in input

Image Encrypted with ECB

• Patterns preserved in output

Example of ECB
• Token contains several meaningful fields,

including numeric user id

• Encrypted form appears meaningless

8-Byte Blocks

Copy a Whole Block

• Token is
now for
user 992

Register a New User "daf1"

• Now attacker can target uid=1

CBC Ciphers
• Cipher Block Chain mode

• XORs each block of plaintext with the
preceding block of ciphertext

CBC Ciphers

• Removes all visible
patterns from the apple
logo

Example: CBC
• Token contains uid and other fields

• Encrypted version appears random

Modify a Single Byte of
Ciphertext

• That block will decrypt to junk

• But the next block will remain meaningful, only
slightly altered by the XOR

• Some of the altered blocks will have valid uid
values

Example Altered Values

Modify a Session Token

Flip Each Bit

Fast Method

• 8 requests per byte

• Won't take long to try all single bit flips

• Will confirm whether application is vulnerable

Results

• Some flips
change user id
to "invalid"

• Others reach
real accounts
for other users!

Information Leakage
• Application may re-use the encryption code

elsewhere

• It may allow user to submit arbitrary input and see
the ciphertext

• Such as to create a download link for an uploaded
file

• Submit desired plaintext as a filename, such as

• uid=1

Weaknesses in Session
Token Handling

Common Myths
• "SSL protects tokens in transmission"

• Some attacks still work, such as XSS

• "Our platform uses mature, sound
cryptography so the token is not
vulnerable"

• But cookie may be stolen in transit

Disclosure on the Network
• Tokens transmitted without encryption

• Can be sniffed from many locations

• User's local network

• Within ISP

• Within IT department of server hosting the
application

Credential Theft v.
Token Theft

• Stealing a user's password may not work

• Tao-factor authentication, requiring a PIN in
addition to the password

• Login performed over HTTPS

• Stealing a session token and hijacking an
authenticated session may still work

• And the user won't be notified of a extra
successful login

Not Always HTTPS
• An app may use HTTPS during login

• But use HTTP after login to see authorized
content

• Gmail did this until recently

• Eavesdropper cannot steal password, but can
steal session token

Upgradeable Token
• App may use HTTP for preauthenticated pages

• Such as the site's front page

• And use HTTPS for login and all subsequent
pages

• But continue to use the same token; upgrade
to an authenticated session

• Attacker can steal the token before login

Back Button
• App uses HTTPS for login and all subsequent

pages

• With a new token

• But user navigates back to an HTTP page with
the Back button

• Exposing the token

sslstrip
• "Log In" link goes to an HTTPS page

• Attacker in the middle alters the page to use
HTTP instead

• And forwards requests to the server via HTTPS

• User won't see any obvious difference in the
page

Mixed Content

• HTTPS page with some HTTP content

• Such as images, style sheets, etc.

• This can send the session token over HTTP

• Browsers now block some mixed-content by
default

Social Engineering
• App uses HTTPS for every page

• Send user an HTTP link via email or IM, or
added to some page the user views

• To http://target.com or http://target.com:443

• Clicking that link may send a session token over
HTTP

Hack Steps

• Walk through the app, from start page, through
login, and all its functionality

• Record every URL and note every session token
you receive

• Note transitions between HTTP and HTTPS

Burp's HTTP History

Secure Cookies

• If secure flag is set on a cookie, browser will
only send it via HTTPS

• If the connection is only HTTP, that cookie won't
be sent

Setting Secure Cookie

Transmitting Secure Cookie

• http session, so "username" is NOT sent

Welcome Page Can't See
Username

Try a Secure Connection

• Go to https://attack.samsclass.info/token.htm

• Add an exception to allow Burp to proxy traffic

• Cookie sent

• Welcome page
knows my name

httponly

• httponly cookie
cannot be used
by JavaScript

Disclosure of Tokens in Logs

• Less common as unencrypted network traffic
but more serious

• Logs often visible to more attackers

inurl:jsessionid

• Example

Where SessionIDs in URL
Will Appear

Referer Attack

• A web mail application transmits session tokens
in the URL

• Send email to targets containing a URL on the
attacker's Web server

• The Referer headers from people who click will
appear in the server logs

Vulnerable Mapping of
Tokens to Sessions

• Allowing users to have two sessions open at the
same time

• Using static tokens (same token is sent to the
user each time they log in)

• Misunderstanding of what a session is

Flawed Logic
• Token value

• But app accepts the same "r1" with a different
"user"

Vulnerable Session
Termination

• A session may remain valid for days after the
last request is received

• Ineffective logout functionality

• Logout merely deletes cookie but does not
invalidate it

• Logout merely runs a client-side script, server
doesn't know a logout has occurred

Token Hijacking
• Cookie theft

• Session fixation: attacker feeds a token to the
user, then user logs in, then attacker hijacks the
session

• Cross-Site Request Forgery (CSRF)

• Tricks user into submitting a request
containing a cookie that goes to an attacker's
server

Liberal Cookie Scope
• When a cookie is set, the server can set the
domain and url (path) the cookie is used for

• By default, all subdomains are included

• Cookie set by games.samsclass.info

• Will be sent to foo.games.samsclass.info

• But NOT to samsclass.info

Specifying the Domain
• App at foo.wahh-app.com sets this cookie:

• A domain can only set a cookie for the same
domain or a parent domain

• And not a top-level domain like .com

Example
• blogs.com sets a cookie for each user

• Each user can create blogs

• joe.blogs.com

• sally.blogs.com

• A blog with JavaScript can steal tokens of other
users who read the attacker's blog

Fix
• There is no way to prevent cookies for an

application from being sent to subdomains

• Solution: use a different domain name for main
app, and scope the domain to this fully qualified
name

• www.blogs.com

• Cookie won't be sent to joe.blogs.com

Path
• Application returns this HTTP header:

• Much stricter than same-origin policy

• Easily defeated by getting a handle to a
JavaScript window (Link Ch 7f)

Securing Session
Management

Securing Session
Management

• Generate Strong Tokens

• Protect them throughout life cycle, from
creation to disposal

Strong Tokens

Strong Tokens

• Tokens should contain no meaning or structure

• All data about the session's owner and status
should be stored on the server in a session
object

• Some random functions, like java.util.Random,
are predictable from a single value

Sources of Entropy
(Randomness)

• Good method:

• Add a secret known only to the server, then
hashing it all

• Change the secret on each reboot

Protecting Tokens
Throughout Their Life Cycle

• Only transmit over HTTPS

• secure, httponly

• Use HTTPS for every page in application

• Don't put session tokens in the URL

• Implement a logout function that invalidates
session token on the server

Protecting Tokens
Throughout Their Life Cycle

• Session should expire after a brief period of
inactivity, such as 10 minutes

• Don't allow concurrent logins

• If a user starts a new session, a new token
should be generated, and the old one invalidated

• Protect diagnostic or administrative functions that
save tokens

• Or don't save tokens in them

Protecting Tokens
Throughout Their Life Cycle

• Restrict domain and path for session
cookies

• Audit codebase and remove XSS
vulnerabilities

• Don't accept tokens submitted by
unrecognized users

• Cancel tokens after such a request

Protecting Tokens
Throughout Their Life Cycle

• Use two-factor authentication

• Makes cross-site request forgery and
other session-hijacking methods more
difficult

• Use hidden fields rather than session
cookies

• More difficult to steal because they aren't
sent in every request

Protecting Tokens
Throughout Their Life Cycle

• Create a fresh session after every
authentication

• To prevent session fixation attacks

Per-Page Tokens
• A new page token is created every time the user

requests an application page

• Page token verified on every request

• If it doesn't match, the session is terminated

• Prevents pages being used out of order

• And blocks an attacker from using a page at the
same time as a real user

Log, Monitor, and Alert

• Requests with invalid tokens should raise IDS
alerts

• Alert users of incidents relating to their
sessions

Reactive Session
Termination

• Terminate session if a request has

• Modified hidden form field or URL query
string parameter

• Strings associated with SQL injection or XSS

• Input that violates validation checks, such as
length restrictions

iClickers

Which item is an encryption method that can
be exploited by flipping single bits in the

ciphertext?

A. ECB
B. CBC
C. Session fixation
D. Plaintext transmission
E. Concurrent logins

Which type of token leaks in the Referer
header?

A. Secure cookie
B. Httponly cookie
C. Token in query string
D. Token in hidden field
E. Per-page tokens

Which type of token is not visible to
JavaScript?

A. Secure cookie
B. Httponly cookie
C. Token in query string
D. Token in hidden field
E. Per-page tokens

What should a logout button do?

A. Nothing
B. Return browser to login page
C. Delete cookie from browser
D. Invalidate token on server
E. Erase browser history

