
CNIT 129S: Securing
Web Applications

Ch 6: Attacking Authentication

Authentication Technologies

• Over 90% of apps use name & password

More Secure Methods
• Two-factor authentication

(or more)

• PIN from a token, SMS
message, or mobile app

• In addition to a
password

• Submitted through an
HTML form

Cryptographic Methods

• Client-side SSL certificate

• Smartcards

• More expensive, higher overhead

HTTP Authentication
• Basic, Digest, and Windows-integrated

• Rarely used on the Internet

• More common in intranets, especially Windows
domains

• So authenticated employees can easily
access secured resources

Third-Party Authentication

Third-Party Authentication

Link Ch 6b

Third-Party Authentication

Design Flaws
• Bad Passwords

Brute-Force Attacks
• Strictly, "brute force" refers to

trying every possible combination
of characters

• Very slow

• In practice, attackers use lists of
common passwords

• Defense: account lockout rules
after too many failed login attempts

Poor Attempt Counters
• Cookie containing failedlogins=1

• Failed login counter held within the current
session

• Attacker can just withhold the session cookie
to defeat this

• Sometimes a page continues to provide
information about a password's correctness
even after account lockout

Insecure Lockout

Verbose Failure Messages

• Friendly for legitimate users

• But helpful for attackers

Script to Find Phone #s
• echo $1,`curl -d "customerEmailAddress=
$1" "https://www.att.com/olam/
submitSLIDEmailForgotIdSlid.myworld" -
silent| grep -Po '(?<=provided \()\d*'`

• When you run  
getatt.sh john.smith@example.com  
it will output a line of text that looks like:

• john.smith@example.com,6782345678

• Link Ch 6d

Username Importance

• Attacks that reveal valid usernames are called
"username enumeration"

• Not as bad as finding a password, but still a
privacy intrusion

• But could be used for social engineering
attacks, such as spearphishing emails

Similar but Non-Identical
Error Messages

• Any difference can be exploited; even response
time

Vulnerable Transmission of
Credentials

• Eavesdroppers may reside:

HTTPS Risks
• If credentials are sent unencrypted, the

eavesdropper's task is trivial, but even HTTPS
can't prevent these risks:

• Credentials sent in the query string are likely
to appear in server logs, browser history, and
logs of reverse proxies

• Many sites take credentials from a POST and
then redirect it (302) to another page with
credentials in the query string

HTTPS Risks
• Cookie risks:

• Web apps may store credentials in cookies

• Even if cookies cannot be decrypted, they can be
re-used

• Many pages open a login page via HTTP and use an
HTTPS request in the form

• This can be defeated by a man-in-the-middle
attack, like sslstrip

Password Change
Functionality

• Periodic password change mitigates the threat
of password compromise (a dubious claim)

• Users need to change their passwords when
they believe them to be compromised

Vulnerable Password
Change Systems

• Reveal whether the requested username is valid

• Allow unrestricted guesses of the "existing
password" field

• Validate the "existing password" field before
comparing the "new password" and "confirm
new password" fields

• So an attacker can test passwords without
making any actual change

Password Change Function
• Identify the user

• Validate "existing password"

• Integrate with any account lockout features

• Compare the new passwords with each other
and against password quality rules

• Feed back any error conditions to the user

• Often there are subtle logic flaws

Forgotten Password
Functionality

• Often the weakest link

• Uses a secondary challenge, like "mother's
maiden name"

• A small set of possible answers, can be brute-
forced

• Often can be found from public information

Forgotten Password
Functionality

• Often users can write their own questions

• Attackers can try a long list of usernames

• Seeking a really weak question, like "Do I own
a boat?"

• Password "Hints" are often obvious

Forgotten Password
Functionality

• Often the mechanism used to reset the
password after a correct challenge answer is
vulnerable

• Some apps disclose the forgotten password to
the user, so an attacker can use the account
without the owner knowing

• Some applications immediately let the user in
after the challenge--no password needed

Forgotten Password
Functionality

• Some apps allow the user to specify an email
for the password reset link at the time the
challenge is completed

• Or use email from a hidden field or cookie

• Some apps allow a password reset and don't
notify the user with an email

"Remember Me"

• Sometimes a simple persistent cookie, like

• RememberUser=jsmith

• Session=728

• No need to actually log in, if username or
session ID can be guessed or found

"Remember Me"

• Even if the userid or session token is properly
encrypted, it can be stolen via XSS or by getting
access to a user's phone or PC

User Impersonation
• Sometimes help desk personnel or other special

accounts can impersonate users
• This may have flaws like

• Implemented with a "hidden" function lacking
proper access controls, such as
•/admin/ImpersonateUser.jsp

• A guessable session number
• A fixed backdoor password

Incomplete Validation

• Some applications
truncate passwords
without telling users

• Also strip unusual
characters

• Link Ch 6e

Nonunique Usernames
• Rare but it happens

• You may be able to create a new account with
the same username as an existing account

• During registration or a password change

• If the password also matches, you can detect
that from a different error messge

Predictable Usernames

• Automatically generated names like

• User101, User102, ...

Predictable Initial Passwords

• User accounts are create in large batches

• All have the same initial password

Insecure Distribution of
Credentials

• Passwords sent by email, SMS, etc.

• Users may never change those credentials

• Activation URLs may be predictable

• Some apps email the new password to the user
after each password change

Implementation Flaws

Fail-Open Login

• Blank or invalid username may cause an
exception in the login routine

• Or very long or short values

• Or letters where numbers are expected...

• And allow the user in

Multistage Login

• Enter username and password

• Enter specific digits from a PIN (a CAPTCHA)

• Enter value displayed on a token

Multistage Login Defects

• May allow user to skip steps

• May trust data that passes step one, but let user
change it, so invaid or locked-out accounts
remain available

• May assume that the same username applies to
all three stages but not verify this

Multistage Login Defects

• May use a randomly-chosen question to verify
the user

• But let the attacker alter that question in a
hidden HTML field or cookie

• Or allow many requests, so attacker can choose
an easy question

Insecure Credential Storage

• Plaintext passwords in database

• Hashed with MD5 or SHA-1, easily cracked

Securing Authentication
• Considerations

• How critical is security?

• Will users tolerate inconvenient controls?

• Cost of supporting a user-unfriendly system

• Cost of alternatives, compare to revenue
generated or value of assets

Strong Credentials
• Minimum password length, requiring alphabetical,

numeric, and typographic characters

• Avoiding dictionary words, password same as
username, re-use of old passwords

• Usernames should be unique

• Automatically generated usernames or passwords
should be long and random, so they cannot be
guessed or predicted

• Allow users to set strong passwords

Handle Credentials
Secretively

• Protect then when created, stored, and transmitted

• Use well-established cryptography like SSL, not
custom methods

• Whole login page should be HTTPS, not just the
login button

• Use POST rathern than GET

• Don't put credentials in URL parameters or cookies

Handle Credentials
Secretively

• Don't transmit credentials back to the client,
even in parameters to a redirect

• Securely hash credentials on the server

Hashing

• Password hashes must be salted and stretched

• Salt: add random bytes to the password before
hashing it

• Stretched: many rounds of hashing (Kali Linux 2
uses 5000 rounds of SHA-512)

Handle Credentials
Secretively

• Client-side "remember me" functionality should
remember only nonsecret items such as
usernames

• If you allow users to store passwords locally,
they should be reversibly encrypted with a key
known only to the server

• And make sure there are no XSS
vulnerabilities

Handle Credentials
Secretively

• Force users to change passwords periodically

• Credentials for new users should be sent as
securely as possible and time-limited; force
password change on first login

• Capture some login information with drop-down
lists instead of text fields, to defeat keyloggers

Validate Credentials
Properly

• Validate entire credential, with case sensitivity

• Terminate the session on any exception

• Review authentication logic and code

• Strictly control user impersonation

Multistage Login
• All data about progress and the results of

previous validation tasks should be held in the
server-side session object and never available
to the client

• No item of information should be submitted
more than once by the user

• No means for the user to modify data after
submission

Multistage Login

• The first task at every stage should be to verify
that all prior stages have been correctly
completed

• Always proceed through all stages, even if the
first stage fails--don't give attacker any
information about which stage failed

Prevent Information Leakage
• All authentication failures should use the same

code to produce the same error message

• To avoid subtle differences that leak
information

• Account lockout can be used for username
enumeration

• Login attempts with invalid usernames should
lead to the same error messages as valid ones

Self-Registration

• Allowing users to choose usernames permits
username enumeration. Better methods:

• Generate unique, unpredictable usernames

• Use e-mail addresses as usernames and
require the user to receive and use an email
message

Prevent Brute-Force Attacks
• At login, password change, recover lost password, etc.

• Using unpredictable usernames and preventing their
enumeration makes brute-force attacks more difficult

• High-security apps like banks disable an account after
several failed logins

• Account holder must do something out-of-band to
re-activate account, like phone customer support
and answer security questions

• A 30-minute delay is friendlier and cheaper

Prevent Brute-Force Attacks
• Consider this type of attack

• Use many different usernames with the same
password, such as "password"

• Defenses: strong password rules, CAPTCHA

Password Change
• No way to change username

• Require user to enter the old password

• Require new password twice (to prevent
mistakes)

• Same error message for all failures

• Users should be notified out-of-band (such as
via email) that the password has been changed

Account Recovery

• For security-critical apps, require account
recovery out-of-band

• Don't use "password hints"

• Email a unique, time-limited, unguessable,
single-use recovery URL

Account Recovery

• Challenge questions

• Don't let users write their own questions

• Don't use questions with low-entropy
answers, such as "your favorite color"

Log, Monitor, and Notify
• Log all authentication-related events

• Protect logs from unauthorized access

• Anomalies such as brute-force attacks should
trigger IDS alerts

• Notify users out-of-band of any critical security
events, such as password changes

• Notify users in-band of frequent security events,
such as time and source IP of the last login

