
CNIT 129S: Securing
Web Applications

Ch 5:  
Bypassing Client-Side Controls

Clients Repeat Data

• It's common for a server to send data to
a client

• And for the client to repeat that same
data back to the server

• Developers often assume that the client
won't modify the data

Why Repeat Data?
• Avoids storing a lot of data within the user's

session; can improve performance

• An app deployed on many servers may not have
the required data available at each step

• Third-party components, such as shopping carts,
may be difficult to deploy without repeating data

• Getting approval to modify server-side API code
may be difficult and slow; storing data on the
client may be fast and easy

Hidden Form Fields

• Server sends
hidden price field
to client

Changing Price with Burp

Cookie Fields

• Discount amount in cookie

Demonstration

• Alter cookie value with Burp Repeater

URL Parameters

• No proxy
needed

• Just modify
the URL

Hidden URL Parameters
•

• <iframe src="http://foo.com?price=449">

• <form action="http://foo.com?price=449"
method="POST">

• Pop-up windows or other techniques that hide
the URL bar

• All are unsafe; can be exploited with a proxy

Referer Header

• Shows the URL that sent the request

• Developers may use it as a security mechanism,
trusting it

Demo

Opaque Data
• Data may be encrypted or obfuscated

Handling Opaque Data
• If you know the plaintext, you may be able to

deduce the obfuscation algorithm

• App may contain functions elsewhere that you
can leverage to obfuscate plaintext you control

• You can replay opaque text without deciphering it

• Attack server-side logic with malformed strings,
such as overlong values, different character sets,
etc.

ASP.NET ViewState
• A hidden field created by default in all ASP.NET

web apps

• This code adds a price to the ViewState

ViewState
• Form sent to the user will now look like this

User Submits Form

• ViewState is Base64 Encoded

Decoded ViewState

Burp contains a ViewState parser (next slide)

Some ASP.NET apps use MAC protection
A 20-byte keyed hash at the end of the
ViewState structure

HTML Forms

• Only allows one
character

• Intending to set max. of
9

Defeated with a Proxy

Refreshing a Page
• If you see a 304 server response like this

• Page not sent from server, because browser has
already cached it

• Etag string is a sort of version number

If-Modified-Since:
• Browser sent a request like this

• May also use "If-None-Match" header

Forcing a Full Reload

• Use Shift+Refresh in browser

• Use Burp to remove the "If-Modified-Since" and
"If-None-Match" headers

Script-Based Validation

Defeated with Burp
• Replace value after script runs

• Could also disable JavaScript, or modify the script

Tips
• Where JavaScript is used for input validation

• Submit data that would have failed validation

• Using a proxy, or with modified source code

• Determine whether validation is also performed
on the server

• If multiple fields are validated, enter valid data in
all fields except one at a time, to test all the cases

Proper Use

• Client-side validation can improve performance
and user experience

• Faster response and no wasted server time on
invalid entries

• But the validation cannot be trusted and must
be repeated on the server

Disabled Elements

Disabled Elements
• Cannot be changed

• Not sent to server

Add Parameter in Burp
• Use Add button to insert the disabled field

• It may still be used on server-side

Burp Response Modification

Form is Easy to Hack

Browser Extensions

• Flash or Java client-side routines can collect
and process user input

• Internal workings are less transparent than
HTML forms and JavaScript

• But still subject to user modification

Example: Casino App
• Client could

• Tamper with game state to gain an advantage

• Bypass client-side controls to perform illegal
actions

• Find a hidden function, parameter, or resource to
gain illegitimate access to a server-side resource

• Receive information about other players to gain
an advantage

Common Browser Extensions
• Java applets, Flash, and Silverlight

• All have these features

• Compiled to bytecode

• Execute in a virtual machine that provides a
sandbox

• May use remoting frameworks employing
serialization to transmit complex data
structures or objects over HTTP (link Ch5c)

Java

• Java applets run in the Java Virtual Machine
(JVM)

• Sandboxed by Java Security Policy

Flash

• Runs in Flash virtual machine

• Sandvoxed from host computer

• ActionScript 3 adds remoting capability with
Action Message Format (AMF) serialization

Silverlight
• Microsoft's alternative to Flash

• Provides a scaled-down .NET experience within
the browser

• In a sandboxed environment

• Apps most commonly written in C#, but other
languages like Python can be used

Approaches to Browser
Extensions

• Intercept requests and responses in a proxy

• May be obfuscated or encrypted

• Cannot explore all business logic

• Decompile bytecode and read source, or run it
in a debugger

• Time-consuming and requires detailed
understanding of the technologies and
programming languages used

Intercepting Traffic from
Browser Extensions

• Allows you to defeat server-side controls, same
as earlier in this chapter

• Serialized data may be tricky to modify

• Must unpack it, edit it, and repack it correctly

Java Serialization

• Content-type header indicates serialized data

• DSer is a Burp plug-in handles such data

DSer in Action

• Raw request on left, unpacked version on right

• Link Ch 5d

Flash Serialization

• Content-type header

• Burp natively handles AMF format

Silverlight Serialization

• Uses two instances of Burp (Link Ch 5e)

Obstacles to Intercepting
Traffic from Browser Extensions

• Some requests may bypass the proxy settings
in your browser

• Components may issue their own HTTP
requests, outside browser APIs

• Solution: modify hosts file and use invisible
proxying

Obstacles to Intercepting Traffic
from Browser Extensions

• Client component may reject the SSL certificate
from the proxy

• Because browser extension does not pick up
browser's configuration for temporarily trusted
certificates

• Or component is programmed not to accept
untrusted certificates

• Solution: set proxy to use a master CA
certificate; install in your trusted certificate store

Obstacles to Intercepting
Traffic from Browser Extensions
• Client uses a non-HTTP protocol

• You can use a sniffer like Wireshark

• Or a function-hooking tool like Echo Mirage

• Can inject into a process and intercept its calls to
socket APIs

• So you can modify data before it's sent over the
network

• But it seems to be gone

Tips
• Ensure that your proxy is correctly intercepting
all traffic; check with a sniffer

• Use appropriate serialization unpacker
• Review responses from the server that trigger
client-side logic; you may be able to unlock the
client GUI to reveal privileges actions

• Look for correlation between critical actions
and communications with the server

• Does rolling the dice in a gambling app take
place on server or client?

Decompiling Browser
Extensions

• Most thorough method

• Extensions are compiled into bytecode

• High-level platform-independent binary
representation

• Some apps use defensive measures to
obfuscate bytecode

Downloading the Bytecode
• Find link to bytecode in HTML source code
• Java applets generally use <applet> tag
• Others use <object> tag
• Once you find the URL, put it in browser
address bar to donload the bytecode

Downloading the Bytecode
• If URL is not easy to find, look in proxy history

after loading the app

• Some proxies filter the history to hide items
such as images and style sheet files; the object
might be filtered

• Browsers cache bytecode aggressively, and
even a full refresh won't request component
again

• Must clear cache and restart browser

Decompiling the Bytecode
• Java applets are usually .jar files

• Containing .class files with bytecode

• Silverlight objects are .xap files

• Containing .dll files with bytecode

• Both are Zip archives; rename them to .zip and
unzip them with any unzip utility

• Flash objects are .swf files; no unpacking required

Decompilers
• Jad for Java (link Ch 5f)

• For Flash: Flasm or Flare (links Ch 5g, 5h)

• SWFScan was bundled into WebInspect

• 15-day trial at link Ch 5i

• Silverlight: use .NET Reflector

• Free trial at link Ch 5j

Example: Bank of America
Android App

• Pull from phone with adb

• Unpack with apktool

Files and Folders
• Unpacked app is many .smali files (Android

Java bytecode)

Java v. Bytecode

Modifying Smali Code

Pack and Sign

Trojaned App Leaks Credit
Card Numbers

Working on the Client-Side
Source Code

• Input validation or other security-relevant logic

• Obfuscation or encryption

• "Hidden" functionality, not visible in user
interface

• You might be able to unlock it by modifying
code

• References to server-side functionality you
haven't already found via mapping

Recompiling
• For Java, use javac from the JDK

• For Flash, use flasm, or a Flash development
studio from Adobe

• For Silverlight, use Visual Studio

• For Java or Silverlight, zip the code and change
file extension to .jar or .xap

Loading Modified
Component into a Browser

• Find original component within the browser
cache and replace it

• Use a proxy to modify the source code of the
page that loads the component and specify a
different URL pointing to your modified
component

• Difficult--may violate same-origin policy

Loading Modified
Component into a Browser

• Use a proxy to intercept the response
containing the executable and replace the body
of the message with your modified version

• Burp has "Paste from File" option for this

Recompiling and Executing
Outside the Browser

• Modify app to run as a standalone program

• For Java, just implement a "main" method

Manipulating the Original
Component using JavaScript

• Using a proxy, intercept and edit responses

• To add JavaScript that unlocks hidden parts of
the interface

Bytecode Obfuscation

• Difficult to read

Obfuscation Methods

• Meaningful names replaced with meaningless
expressions such as a, b, c, ...

• Replace names with reserved keywords such as
"new" and "int"

• Most VMs tolerate such technically illegal
code, but it cannot be recompiled

Obfuscation Methods
• Strip unnecessary debug and meta-information

from bytecode, such as

• Source filenames and line numbers

• Local variable names

• Inner class information

• Add redundant code that confuses the reverse
engineer

Obfuscation Methods
• Modify path of execution, make it convoluted

• Using "jump" instructions

• Add illegal programming constructs

• Unreachable statements

• Missing "return" statements

• VMs tolerate them, but decompiled source
cannot be recompiled without correcting them

Tips
• Some components will remain readable even if

source is obfuscated, such as methods called
from JavaScript

• Many Integrated Development Environments
(IDE's) can make code more readable by
"refactoring" it (link Ch 5k)

• Running code through an abfuscator a second
time can remove a lot of the obfuscation (see
JODE, link Ch 5l)

Example: Shopping Java
Applet

• This portion of the code defines a hidden field
named "obfpad"

Example Continued
• JavaScript validator

Example Continued

• This code loads the Java applet
"CheckQuantity.class"

Example Continued
• Form is submitted with quantity of 2

• It sends this POST request

• quantity is obfuscated

Download Applet and
Decompile with Jad

Decompiled Java
• Header

Decompiled Java
• Verifies tha qty is between 0 and 50

• Prepares a string to hold obfuscated text

Decompiled Java
• XORs text with obfpad

Modified Applet
• Remove input validation from "doCheck"

• Add a "main" method that calls "doCheck" and
prints the obfuscated result

• Code on next page outputs obfuscated string
for quantity of 999

• Try various values, including strings, to find
vulnerabilities

Recompile with javac

JavaSnoop
• Free Java Debugger (Links Ch 5m, 5n)

• Example: Java Login Applet

Attach to Process

Hook Classes

Edit Credentials

Canary Mode
• Follow "canary" values through app

• Works with Burp

Native Client Components
• Some actions cannot be done from a sandbox

• Verifying that the user has up-to-date
antivirus

• Verifying proxy settings

• Integrating with a smartcard reader

• For these, native code components like ActiveX
are used; they run outside the sandbox

Reverse-Engineering Native
Code

• OllyDbg to debug

• IDA Pro or Hopper to disassemble

Handing Client-Side Data
Securely

• Don't send critical data like prices from the
client

• Send product ID and look up price on server

• If you must send important data, sign and/or
encrypt it to avoid user tampering

• May be vulnerable to replay or cryptographic
attacks

Validating Client-Generated
Data

• All client-side validation methods are vulnerable

• They may be useful for performance, but they
can never be trusted

• The only secure way to validate data is on the
server

Logs and Alerts

• Server-side intrusion detection defenses should
be aware of client-side validation

• It should detect invalid data as probably
malicious, triggering alerts and log entries

• May terminate user's session, or suspend user's
account

