
CNIT 129S: Securing
Web Applications

Ch 3: Web Application Technologies

HTTP

Hypertext Transfer Protocol
(HTTP)

• Connectionless protocol

• Client sends an HTTP request to a Web
server

• Gets an HTTP response

• No session formed, nothing
remembered--no "state"

HTTP Requests

• Verb: GET (also called "method")

• URL: /css?family=Roboto:400,700

• Portion after ? is the query string containing
parameters

• Version: HTTP/1.1

HTTP Requests

• Referer: URL the request originated from

• User-Agent: browser being used

• Host: Hostname of the server

• Essential when multiple hosts run on the same IP

• Required in HTTP/1.1

HTTP Requests

• Cookie: additional parameters the server has issued
to the client

HTTP Response

• First line

• HTTP version

• Status code (200 in this case)

• Textual "reason phrase" describing the response

• Ignored by browser

HTTP Response

• Server: banner of server software

• Not always accurate

• Set-Cookie used to set cookie values

HTTP Response

• Pragma: tells browser not to store
response in its cache

• Expires: set to a date in the past to ensure
that the content is freshly loaded

HTTP Response

• Message Body after header contains data
of type specified in Content-Type header

HTTP Methods: GET
• GET retrieves resources

• Can send parameters in the URL query string

• Users can bookmark the whole URL

• Whole URL may appear in server logs and in
Referer headers

• Also on the browser's screen

• Don't put sensitive information in the query string

HTTP Methods: POST
• POST performs actions

• Request parameters can be in URL
query strong and in the body of the
message

• Parameters in body aren't saved in
bookmarks or most server logs

• A better place for sensitive data

HTTP Methods: POST
• POST requests perform actions, like

buying something

• Clicking the browser's Back button
displays a box like this

Other HTTP Methods
• HEAD returns only the header, not

the body

• Can be used to check if a resource
is available before GETing it

• OPTIONS shows allowed methods

• PUT uploads to server (usually
disabled)

URL (Uniform Resource
Locator)

• If protocol is absent, it defaults to HTTP

• If port is absent, it uses the default port for the
protocol

• 80 for HTTP, 443 for HTTPS, etc.

REST (Representational
State Transfer)

• RESTful URLs put parameters in the URL, not
the query string

• Becomes

HTTP Headers

Cookies
• Cookies are resubmitted in each request to the

same domain

• Online other request parameters

Set-Cookie Header
• Optional attributes

• expires - date when the cookie stops being valid
• If absent, cookie is used only in the current
browser session

• domain - specified domain for which cookie is
valid

• Must be the same or a parent of the domain
from which the cookie is received

• "Same-Origin Policy"

Set-Cookie Header
• Optional attributes

• path - URL path for which the cookie
is valid

• secure - transmit cookie only via
HTTPS

• HttpOnly - Cookie cannot be directly
accessed via client-side JavaScript

Status Codes Groups

Important Status Codes
• 200 OK - request succeeded, response body

contains result

• 301 Moved Permanently - redirects the browser,
client should use new URL in the future

• 302 Found - redirects browser temporarily.
Client should revert to original URL in
subsequent requests

Important Status Codes
• 304 Not Modified - browser should use cached

copy of resource

• 400 Bad Request - invalid HTTP request

• 401 Unauthorized - Server requires HTTP
authentication.

• WWW-Authenticate header specifies the
type(s) of authentication supported

Important Status Codes

• 403 Forbidden - no one is allowed to access
resource, regardless of authentication

• 404 Not Found - requested resource does not
exist

• 500 Internal Server Error - unhanded exception
in an app, such as a PHP error

HTTPS
• HTTP over SSL (Secure Sockets Layer)

• Actually now TLS (Transaction Layer Security)

• All versions of SSL are deprecated

• Protects data with encryption

• Protects data in motion, but not at rest or in
use

HTTP Proxies

• Browser sends requests to proxy server

• Proxy fetches resource and sends it to browser

• Proxies may provide caching, authentication,
and access control

HTTPS and Man-in-the-
Middle (MITM) Attacks

• HTTPS connections use public-key cryptography
and end-to-end encryption
• Only the endpoints can decrypt traffic

• Companies wishing to restrict HTTPS traffic have
two choices

• Perform complete MITM with fake certificates,
or real root certificates from trusted CA's

• Allow encrypted traffic to trusted domains
without being able to inspect it

HTTPS and Proxies
• Browser sends an HTTP request to the proxy

using the CONNECT method and destination
hostname and port number

• If proxy allows the request, it returns 200 status
and keeps the TCP connection open

• Thereafter acts as a pure TCP-level relay to the
destination web server

HTTP Authentication
• Basic: sends username and password in Base64-

encoding

• NTLM: Uses Windows NTLM protocol (MD4
hashing)

• Digest: Challenge-response using MD5 hashing

• These are generally used in intranets, not on the
Internet

• All are very weak cryptographically, and should
be protected with HTTPS

Web Functionality

Server-Side Functionality
• Static content - HTML pages and images that

are the same for all users

• Dynamic content - response created in the fly,
can be customized for each user

• Created by scripts on the server

• Customized based on parameters in the
request

HTTP Parameters
• May be sent in these ways:

Other Inputs

• Server-side application may use any part of the
HTTP request as an input

• Such as User-Agent

• Often used to display smartphone-friendly
versions of pages

Web Application
Technologies

The Java Platform
• Standard for large-scale enterprise applications

• Lends itself to multitiered and load-balanced
architectures

• Well-suited to modular development and code
reuse

• Runs on Windows, Linux, and Solaris

Java Platform Terms
• Enterprise Java Bean (EJB)

• Heavyweight software component to encapsulate
business logic, such as transactional integrity

• Plain Old Java Object (POJO)

• User-defined, lightweight object, distinct from a special
object such as an EJB

• Java Servlet

• Object on an application server that receives HTTP
requests from client and returns HTTP responses

Java Platform Terms
• Java web container

• Platform or engine that provides
a runtime environment for Java-
based web applications

• Ex: Apache Tomcat, BEA
WebLogic, JBoss

Common Components
• Third-party or open-source components that are

often used alongside custom-built code

ASP.NET
• Microsoft's web application framework

• Competitor to Java platform

• Uses .NET Framework, which provides a virtual
machine (the Common Language Runtime) and
a set of powerful APIs (Application Program
Interfaces)

• Applications can be written in any .NET
language, such as C# or VB.NET

Visual Studio
• Powerful development environment for ASP.NET

applications

• Easy for developers to make a web application,
even with limited programming skills

• ASP.NET helps protect against some common
vulnerabilities, such as cross-site scripting,
without requiring any effort from the developer

PHP
• Originally "Personal Home Page", now "PHP

Hypertext Processor"

• Often used on LAMP servers

• Linux, Apache, MySQL, and PHP

• Free and easy to use, but many security
problems

• Both in PHP itself and in custom code using it

Common PHP Applications

Ruby on Rails

• Allows rapid development of applications

• Can autogenerate much of the code if developer
follows the Rails coding style and naming
conventions

• Has vulnerabilities like PHP

SQL (Structured Query
Language)

• Used to access data in relational databases,
such as Oracle, MS-SQL, and MySQL

• Data stored in tables, each containing rows and
columns

• SQL queries are used to read, add, update, or
delete data

• SQL injection vulnerabilities are very severe
(OWASP #1)

XML (eXtensible Markup
Language)

• A specification to encode data in machine-
readable form

• Markup uses tags

Web Services and SOAP
(Simple Object Access Protocol)
• SOAP uses HTTP and XML to exchange data

• Link Ch 3b

SOAP
• If user-supplied data is incorporated into SOAP

requests, it can have code injection
vulnerabilities

• Server usually publishes available services and
parameters using Web Services Description
Language (WDSL)

• soapUI and other tools can generate requests
based on WDSL file

Client-Side Functionality
(in browser)

HTML
Hypertext Markup Language

• HTML used for formatting "markup"

• XHTML is baed on XML and is stricter than old
versions of HTML

Hyperlinks
• Clickable text that go to URLs

• Clicking this link:

• Makes this request

HTML Forms

HTTP Request

multipart/form-data

• Browser generates random boundary text

• Link Ch 3c

HTTP Request

CSS
Cascading Style Sheets

• Specifies format of document elements

• Separates content from presentation

• Has vulnerabilities, and can be used for attacks

Javascript
• Scripts that run in the client's browser

• Used to validate user-entered data before
submitting it to the server

• Dynamically modify UI in response to user
action, such as in drop-down menus

• Using Document Object Model (DOM) to control
the browser's behavior

VBScript

• Microsoft's alternative to JavaScript

• Only supported in Internet Explorer (now
obsolete)

• Edge does not support VBScript

• Links Ch 3d, 3e

Document Object Model
DOM

• Link Ch 3g

Ajax
Asynchronous JavaScript and XML

• Client-side scripts can fetch data without
reloading the entire page

• Allow you to drag Google Maps around

Ajax
Example

• Google Maps API

• Links Ch 3h, 3i

JSON
JavaScript Object Notation

• Client-side JavaScript uses the
XMLHttpRequest API to request data from a
server

• Data is returned in JSON format:

Updating Data with JSON

Same-Origin Policy
• Prevents content from different origins interfering

with each other in a browser

• Content from one website can only read and modify
data from the same website

• Ex: scripts on Facebook can't read or write to
data on your online banking page

• When this process fails, you get Cross-Site
Scripting, Cross-Site Request Forgery, and other
attacks

Same-Origin Policy

HTML5

Web 2.0

Browser Extensions

• Many security problems

• More and more restricted in modern browsers

State and Sessions
• Stateful data required to supplement stateless

HTTP

• This data is held in a server-side structure
called a session

• The session contains data such as items added
to a shopping cart

• Some state data is stored on the client, often
HTTP cookies or hidden form fields

Encoding Schemes

URL Encoding

• URLs may contain only printable ASCII
characters

• 0x20 to 0x7e, inclusive

• To transfer other characters, or problematic
ASCII characters, over HTTP, they must be URL-
encided

Unicode Encoding

• Supports all the world's writing systems

• 16 bits per character, starting with %u

UTF-8 Encoding
• Variable length

• Uses % character before each byte

• Unicode and UTF-8 are often used to bypass filters in attacks

HTML Encoding

• HTML-encoding user data before sending it to
another user is used to prevent Cross-Site
Scripting attacks

Base64 Encoding
• Represents binary data using 64 ASCII

characters

• Six bits at a time

• Used to encode email attachments so they can
be sent via SMTP

• Uses this character set

Hex Encoding

• Hexadecimal numbers corresponding to each
ASCII character

• ABC encodes to 414243

Remoting and Serialization
Frameworks

• Allows client-side code to use server-side APIs
as if they were local

