
CNIT 129S: Securing 
Web Applications

Ch 13: Attacking Other Users: 
            Other Techniques (Part 1)



Request Forgery



Request Forgery
• Also called session riding

• Related to session hijacking

• With request forgery, attacker never needs to 
know the victim's session token

• Attacker tricks the user's web browser into 
making an unwanted request



On-Site Request Forgery 
(OSRF)

• Used with stored XSS vulnerabilities

• Ex: message board; messages are submitted 
with this POST request



Example
• This is added to the messages page

• Test for XSS, but < and > are being HTML-
encoded



Example
•  But you control part of the <img> tag

• Put this into the "type" parameter

• A user viewing the message will now send a 
request attempting to create a new user

• When an administrator views your message, it 
works



Preventing OSRF
• Validate user input strictly

• In the example. restrict "type" to a range of valid 
values

• If you must accept other values, filter out

• / . \ ? & =

• HTML-encoding them won't stop this attack



Cross-Site Request Forgery 
(CSRF)

• Attacker creates a website that causes the 
user's browser to send a request directly to the 
vulnerable application

• To perform an unintended action that benefits 
the attacker

• Example: visit this blog and your browser buys 
a book on Amazon



Same-Origin Policy
• Does not prevent a website from issuing 

requests to a different domain

• Prohibits the originating website from 
processing the responses from other domains

• CSRF attacks are "one-way"

• Multistage attacks are not possible with a pure 
CSRF attack



Example
• Administrators can make a new account with 

this request



Three Features that Make It 
Vulnerable

• Request performs a privileged action

• Relies solely on HTTP cookies to track the 
session

• No session-related cookies are transmitted 
elsewhere within the request

• Attacker can determine all required parameters



Example CSRF Attack



Example: eBay (2004)

• A crafted URL could make a bid on an item

• From a third-party website (CSRF)

• An <img> tag could call the external website

• So simply viewing an item would cause  bid on 
it



Exploiting CSRF Flaws

• Most common flaw: application relies solely on 
HTTP cookies for tracking sessions

• Browser automatically sends cookie with every 
request



Authentication and CSRF
• Web interface of DSL routers

• Most users don't change the default IP address 
or default  username and password

• Attacker's Web page can first login with default 
credentials to get a session token

• Then perform an important action, such as 
turning off the firewall



Preventing CSRF Flaws
• Supplement HTTP cookies with additional 

methods of tracking sessions

• Typically hidden fields in HTML forms

• This blocks CSRF attacks, if the attacker has no 
way to determine the value of the "anti-CSRF 
token"

• Tokens must not be predictable, and must be tied 
to a session so they can't be re-used from a 
different session



Local Brute Force Attack
• If app sends anti-CSRF token in the URL query 

string, and uses the same anti-CSRF token 
throughout the session

• Attacker can generate guesses for a request 
including the token and use the JavaScript API 
"getComputerStyle" to see if that link has been 
visited

• This allows a brute-force attack locally within 
the browser--no requests sent out at all



XSS and CSRF
• An anti-CSRF token will prevent a simple XSS 

attack like this

• http://forum.com/showimg.php?
filename=http;//amazon.com/buy.php?
id=112233

• Because the browser will send an Amazon 
cookie, but it won't know the value of the hidden 
field on a real Amazon purchase page



Defeating Anti-CSRF 
Defenses Via XSS

• Possible if

• Stored XSS flaws within the defended functionality 
enable the attacker to inject JavaScript that reads 
the token

• Anti-CSRF is not used for every step of the process, 
and a vulnerable step can be used to steal the token

• Anti-CSRF token is tied to the user but not to the 
session



UI Redress
• Trick the browser into making an unwanted 

action from within the target app

• Defeats anti-CSRF protection

• Also called "Clickjacking"

• Target page is opened in an iframe made 
invisible via CSS





Stealing Keystrokes

• Attacker makes a page that asks the user to 
type text; address, comment, CAPTCHA, etc.

• Script grabs certain characters and passes the 
keystroke event to the target interface



Stealing Mouse Movements

• Attacker's page makes the user perform mouse 
actions, like dragging elements

• Script can pass these actions to the target page, 
selecting text and dragging it into an input field

• Can steal URLs including anti-CSRF tokens



Framebusting Defenses
• Each page of an app runs a script to see if it's 

loading in an iframe

• If so, it attempts to "bust" out of the iframe, or 
redirects to an error page

• In 2010 a Stanford study found that all 
framebusting defenses used by the top 500 
websites could be circumvented



Example

• Framebusting code



Attacks
• Attacker can redefine "top.location" so that an 

exception occurs when a child tries to reference it, 
with this code

• var location='foo';

• Attacker can hook the "window.onbeforeunload" event 
so the attacker's event handler runs when the 
framebusting code tries to set the location of the top-
level frame

• Redirecting it to a HTTP 204 (No Content) response

• Result: browser cancels the chain of calls



Attacks
• Top-level frame can define "sandbox" when loading 

the target into the iframe

• This disables scripting in the child frame while 
leaving its cookies enabled

• Top-level frame can use the IE XSS filter to disable 
the framebusting script

• By including a parameter when opening the iframe 
that contains part of the script

• So the browser thinks it's injected code



Preventing UI Redress

• X-Frame-Options header

• Set to "deny" to disallow loading the page in a 
frame

• Set to "sameorigin" to prevent framing by 
third-party domains



Mobile Web Pages
• Pages designed for use on mobile devices often 

lack UI redress defenses

• Because the attacks are difficult on the mobile 
device

• But the mobile pages can often be used in 
normal browsers, and sessions are often shared 
between both versions of the application



Capturing Data Cross-
Domain

• The same-origin policy is designed to prevent 
code running on one domain from accessing 
content delivered from another domain

• But there are ways to do it



Capturing Data by Injecting 
HTML

• Example



Injection

• Causes part of the page to be interpreted as a 
parameter, and sent to the attacker's server



Another Injection

• Browser ignores the second <form> tag and 
now sends the request to the attacker



JavaScript Hijacking
• A page can load JavaScript from another 

domain and use it

• Normally, there's nothing sensitive in the loaded 
script

• But modern AJAX sites use JavaScript in ways 
not considered by the designers of the same-
origin policy



Example
• User logs in

• Clicks "Show my profile"

• That page contains a showUserInfo() script

• Page dynamically loads this script 



Example
• Script gets user data and makes this function 

call



The Attack
• Attacker makes a page that loads the same 

script, but defines a different showUserInfo()

• If a logged-in user views the malicious page, it 
collects the profile and puts it in a pop-up



Preventing JavaScript 
Hijacking

• Use anti-CSRF tokens to prevent cross-domain 
requests from returning sensitive data

• Poison shared JavaScript with bad code at the 
start, such as for(;;); (an infinite loop)

• Load the script with XMLHttpRequest and 
strip the bad code out

• Attackers using <script> tags get bad code



• Only allow code to be loaded via POST requests

• XMLHttpRequest can use POST methods

• Attackers using <script> tags can't get the 
code

Preventing JavaScript 
Hijacking



The Same-Origin Policy and 
Flash

• Flash can make cross-domain requests

• If the policy file /crossdomain.xml allows it



Policies
• XSS vulnerability on one domain can be used to 

steal data from other domains

• By placing a flash-based ad, for example

• It's possible for a policy file to allow every domain

• Policy file may disclose intranet hostnames or 
other sensitive information



Custom Policy Files
• A flash object may specify a URL for the policy 

file

• If there's no top-level policy file at the default 
location, this one is loaded instead

• People apparently imagine that not posting a 
crossdomain.xml file will disallow cross-domain 
access, but it doesn't!



• Other domains sharing the same IP address are 
treated as same-origin under some 
circumstances

• Java has no provision for publishing a policy 
file controlling interactions from other domains

The Same-Origin Policy and 
Java



• HTML5 modifies XMLHttpRequest to allow full 
two-way interactions with other domains

• If the domains give permission in HTTP 
headers

• Browser adds an "Origin" header to cross-
domain requests

The Same-Origin Policy and 
HTML5



• Server response includes "Access-Control-
Allow-Origin" header, which may include a 
comma-separated list of accepted domains and 
wildcards

The Same-Origin Policy and 
HTML5



• Under some conditions, it uses these headers 
as well

The Same-Origin Policy and 
HTML5


