
CNIT 129S: Securing
Web Applications

Ch 12: Attacking Users:
Cross-Site Scripting (XSS)
Part 2

Finding and Exploiting XSS
Vunerabilities

Basic Approach

• Inject this string into every parameter on every
page of the application

• If the attack string appears unmodified in the
response, that indicates an XSS vulnerability

• This is the fastest way to find an XSS, but it
won't find them all

When the Simple Attack
Fails

• Applications with rudimentary blacklist-based
filters

• Remove <script>, or < > " /

• Crafted attacks may still work

Response Different from
Input

• XSS attacks that don't simply return the attack
string

• Sometimes input string is sanitized, decoded,
or otherwise modified

• In DOM-based XSS, the input string isn't
necessarily returned in the browser's
immediate response, but is retained in the
DOM and accessed via client-side JavaScript

Finding and Exploiting
Reflected XSS Vulnerabilities

Identifying Reflections of
User Input

• Choose a unique string that doesn't appear
anyhere in the application and includes only
alphabetical characters that won't be filtered,
like "myxsstestdmqlwp"

• Submit it as every parameter, one at a time,
including GET, POST, query string, and headers
such as User-Agent

• Monitor responses for any appearance of the
string

Testing Reflections to
Introduce Script

• Manually test each instance of reflected input to
see if it's exploitable

• You'll have to customize the attack for each
situation

1. A Tag Attribute Value

• Here are two ways to exploit it

Demos (Use Firefox)

2. A JavaScript String

• This attack works

3. An Attribute Containing a URL

• Use the javascript: handler to make your script
into a URL

• Or use the onclick event handler

Probing Defensive Filters
• Three common types

Beating Signature-Based
Filters

• You may see an error message like this

Remove Parts of the String

• Until the error goes away

• Find the substring that triggered the error,
usually something like <script>

• Test bypass methods

Ways to Introduce Script
Code

Script Tags

• If <script> is blocked, try these

Event Handlers
• All these run without user interaction

Event Handlers in HTML 5
• Autofocus

• In closing tags

• New tags

Script Pseudo-Protocols
• Used where a URL is expected

• IE allows the vbs: protocol

• HTML 5 provides these new ways:

Dynamically Evaluated
Styles

• IE 7 and earlier allowed this:

• Later IE versions allow this:

Bypassing Filters: HTML
• Ways to obfuscate this attack

Inserted NULL Butes

• Causes C code to terminate the string

• Will bypass many filters

• IE allows NULL bytes anywhere

• Web App Firewalls (WAFs) are typically coded in
C for performance and this trick fools them

Invalid Tags

• Browser will let it run

• Filter may not see it due to invalid tag "x"

Base Tag Hijacking

• Set <base> and later relative-path URLs will be
resolved relative to it

Space Following the Tag Name
• Replace the space with other characters

• Add extra characters when there's no space

NULL Byte in Attribute
Name

• Attribute delimiters

• Backtick works in IE

Attribute Delimiters
• If filter is unaware that backticks work as attribute

delimiters, it treats this as a single attribute

• Attack with no spaces

Attribute Values
• Insert NULL, or HTML-encode characters

HTML Encoding
• Can use decimal and hexadecimal format, add

leading zeroes, omit trailing semicolon

• Some browsers will accept these

Tag Brackets
• Some applications perform URL decoding twice,

so this input

• becomes this, which has no < or >

• and it's then decoded to this

• Some app frameworks translate unusual
Unicode characters into their nearest ASCII
equivalents, so double-angle quotation marks
%u00AB and %u00BB work:

Tag Brackets

• Browsers tolerate extra brackets

• This strange format is accepted by Firefox,
despite not having a valid <script> tag

Tag Brackets

Web Developer Add-on

• View Generated Source shows HTML after
Firefox has tried to "fix" the code

Character Sets

Telling Browser the
Character Set

• Set it in the HTTP Content-Type header

• Or an HTTP META tag

• Or a CHARSET parameter, if one is used

Shift-JIS
• Suppose two pieces of input are used in the

app's response

• input1 blocks quotes, input2 blocks < and >

• This attack works, because %f0 starts a two-byte
character, breaking the quotation mark

Bypassing Filters: Script
Code

JavaScript Escaping
• Unicode

• Eval

• Superfluous escape characters

Dynamically Constructing
Strings

• Third example works in Firefox

• And in other browsers too, according to link Ch
12f

Alternatives
• Alternatives to eval

• Alternatives to dots

Combining Multiple
Techniques

• The "e" in "alert" uses Unicode escaping:
\u0065

• The backslash is URL-encoded: \

• With more HTML-encoding

VBScript

• Skip this section

• Microsoft abandoned VBScript with Edge

• Link Ch 12g

Beating Sanitization
• Encoding certain characters

• < becomes <

• > becomes >

• Test to see what characters are sanitized

• Try to make an attack string without those
characters

Examples

• Your injection may already be in a script, so you
don't need <script> tag

• Sneak in <script> using layers of encoding, null
bytes, nonstandard syntax, or obfuscates scrip
code

Mistakes in Sanitizing Code

• Not removing all instances

• Not acting recursively

Stages of Encoding
• Filter first strips <script> recursively

• Then strips <object> recursively

• This attack succeeds

Injecting into an Event
Handler

• You control foo

• This attack string

• Turns into this, and executes in some browsers

Beating Length Limits
1. Short Attacks

• This sends cookies to server with hostname a

• This tag executes a script from the server with
hostname a

JavaScript Packer

• Link Ch 12h

• Use multiple injection points

• Inject part of the code in each point

• Consider this URL

Beating Length Limits
2. Span Multiple Locations

• It returns three hidden fields

• Inject this way

Beating Length Limits
2. Span Multiple Locations

• Result

Beating Length Limits
2. Span Multiple Locations

• Inject this JavaScript, which evaluates the
fragment string from the URL

• The part after #

Beating Length Limits
3. Convert Reflected XSS to DOM

• First attack works in a straightforward manner

• Second one works because http: is interpreted
as a code label, // as a comment, and %0A
terminates the comment

Beating Length Limits
3. Convert Reflected XSS to DOM

