
CNIT 129S: Securing
Web Applications

Ch 10: Attacking Back-End  
Components

Injecting OS Commands
• Web server platforms often have APIs

• To access the filesystem, interface with
other processes, and for network
communications

• Sometimes they issue operating commands
directly to the server

• Leading to command injection vulnerabilities

Example: Injecting via Perl

Real-World Command
Injection

Injecting via ASP

• User-controlled dirName used in command

Injecting via PHP

• eval function executes a shell command

• User controls "storedsearch" parameter

Finding Command Injection
Flaws

• Any item of user-controlled data may be used to
construct commands

• Special characters used for injection

• ; | &

• Batch multiple commands together

• ` (backtick)

• Causes immediate command execution

Blind Command Injection

• You may not be able to see the results of a
command, like blind SQL injection

• ping will cause a time delay

• Create a back-channel with TFTP, telnet, netcat,
mail, etc.

Exploiting NSLOOKUP
• Put server code in domain name

• Puts this error message in the file

• Then browse to the file to execute it

Preventing OS Command
Injection

• Avoid calling OS command directly

• If you must, filter input with whitelisting

• Use APIs instead of passing parameters to a
command shell which then parses them

Preventing Script Injection
Vulnerabilities

• Don't pass user input into dynamic execution or
include functions

• If you must, filter it with whitelisting

Manipulating File Paths

• File path traversal

• File inclusion

Path Traversal Vulnerabilities

• This function displays a file in the browser

• Using "..\" moves to the parent directory

Exploiting Path Traversal
Vulnerabilities

• May allow read or write to files

• This may reveal sensitive information such as
passwords and application logs

• Or overwrite security-critical items such as
configuration files and software binaries

Filesystem Monitoring Tools

• FileMon from SysInternals on Windows

• Now replaced by ProcMon (link Ch 10a)

• ltrace, strace, or Tripwire on Linux

• truss on Solaris

Detecting Path Traversal

• Inject an unique string in each submitted
parameter, such as traversaltest

• Filter the filesystem monitoring tool for that
string

Circumventing Obstacles to
Traversal Attacks

• Try both ../ and ..\

• Try URL-encoding

• Dot - %2e

• Forward slash - %2f

• Backslash - %5c

Circumventing Obstacles to
Traversal Attacks

Bypassing Obstacles
• The overlong Unicode sequences are

technically illegal, but are accepted anyway by
many Unicode representations, especially on
Windows

• If the app filters character sequences, try
placing one sequence within another

Using Null Characters
• App requires a filename to end in .jpg

• This filename passes the test but is interpreted
as ending in .ini when used

Exploiting Read Access
•Password files for OS and apps
•Configuration files to discover other
vulnerabilities or fine-tune another attack

• Include files with database credentials
•Data sources such as MySQL database files
or XML files

•Source code for server-side scripts to hunt
for bugs

•Log files, may contain usernames, session
tokens

Exploiting Write Access

• Create scripts in users' startup folders

• Modify files such as in.ftpd to exectue
commands when a user next connects

• Write scripts to a Web directory with execute
permissions, and call them from your browser

Preventing Path Traversal
Vulnerabilities

• Avoid passing user-controlled data into any
filesystem API

• If you must, only allow the user to choose from
a list of known good inputs

• If you must allow users to submit filenames, add
defenses from the next slide

Defenses
• After decoding and decanonicalization:

• Check for forward slashes, backslashes, and
null bytes

• If so, stop. Don't attempt to sanitize the
malicious filename

• Use a hard-coded list of permissible file types

• Reject any request for a different type

Defenses
• After decoding and decanonicalization:

• Use filesystem APIs to verify that the filename is
ok and that it exists in the expected directory

• In Java, use getCanonicalPath; make sure
filename doesn't change

• In ASP.NET, use System.Io.Path.GetFullPath

Defenses
• Run app in a chroot jail

• So it doesn't have access to the whole OS file
system

• In Windows, map a drive letter to the allowed
folder and use that drive letter to access
contents

• Integrate defenses with logging and alerting
systems

File Inclusion Vulnerabilities

• Include files make code re-use easy

• Common files are included within other files

• PHP allows include functions to accept remote
file paths

PHP Example
• Country specified in a parameter

• Attacker can inject evil code

Local File Inclusion (LFI)

• Remote file inclusion may be blocked, but

• There may be server-executable files you can
access via LFI, but not directly

• Static resources may also be available via LFI

Finding Remote File
Inclusion Vulnerabilities

• Insert these items into each targeted parameter

• A URL on a Web server you control; look at
server logs to see requests

• A nonexistent IP address, to see a time delay

• If it's vulnerable, put a malicious script on the
server

Finding Local File Inclusion
Vulnerabilities

• Insert these items into each targeted parameter

• A known executable on the server

• A known static resource on the server

• Try to access sensitive resources

• Try traversal to another folder

iClickers

Which vulnerability allows you to add malware
from a different server to a target Web page?

A. Command injection

B. Path traversal

C. File inclusion

D. Procmon

E. chroot

Which defense places the Web server in a
restricted file system?

A. Command injection

B. Path traversal

C. File inclusion

D. Procmon

E. chroot

What defense detects file system
modifications?

A. Command injection

B. Path traversal

C. File inclusion

D. Procmon

E. chroot

Injecting XML External
Entities

• XML often used to submit data from the client to
the server

• Server-side app responds in XML or another
format

• Most common in Ajax-based applications with
asynchronous requests in the background

Example: Search

• Client sends this request

Example: Search

• Server's response

XML External Entity Injection
(XXE)

• XML parsing libraries support entity references

• A method of referencing data inside or
outside the XML document

• Declaring a custom entity in DOCTYPE

• Every instance of &testref; will be replaced by
testrefvalue

Reference an External Entity
• XML parser will fetch the contents of a remote

file and use it in place of SearchTerm

Response Includes File
Contents

Connecting to Email Server

Possible Exploits
• Attacker can use the application as a proxy to

get sensitive information from Web servers

• Send URL-based exploits to back-end web
applications

• Scan ports and harvest banners

• Denial of service:

Injecting into SOAP Services

• Simple Object Access Protocol (SOAP) uses
XML

• Banking app: user sends this request

SOAP Message
• Sent between two of the application's back-end

components

• ClearedFunds = False; transaction fails

• The comment tag is unmatched

• No -->

• It won't be accepted by normal XML parsers

• This might work on flawed custom
implementations

Finding SOAP Injection
• Simple injection of XML metacharacters will

break the syntax, leading to unhelpful error
messages

• Try injecting </foo> -- if no error results, your
injection is being filtered out

• If an error occurs, inject <foo></foo> -- if the
error vanishes, it may be vulnerable

Finding SOAP Injection
• Sometimes the XML parameters are stored,

read, and sent back to the user

• To detect this, submit these two values in turn:

• test</foo>

• test<foo></foo>

• Reply may contain "test" or injected tags

Finding SOAP Injection
• Try injecting this into one parameter:

• <!--

• And this into another parameter:

• -->

• May comment out part of the SOAP message
and change application logic or divulge
information

Preventing SOAP Injection

• Filter data at each stage

• HTML-encode XML metacharacters

Injecting into Back-end
HTTP Requests

• Server-side HTTP redirection

• HTTP parameter injection

Server-Side HTTP Redirection
• User-controllable input incorporated into a URL

• Retrieved with a back-end request

• Ex: user controls "loc"

Connecting to a Back-End
SSH Service

Use App as a Proxy
• Attack third-parties on the Internet

• Connect to hosts on the internal network

• Connect back to other services on the app
server itself

• Deliver attacks such as XSS that include
attacker-controlled content

HTTP Parameter Injection
• This request from the user causes a back-end

request containing parameters the user set

HTTP Parameter Injection
• Front-end server can bypass a check by

including this parameter in the request

• clearedfunds=true

• With this request

Result

HTTP Parameter Pollution
• HTTP specifications don't say how web servers

should handle repeated parameters with the
same name

Example
• Original back-end request

• Front-end request with added parameter

Attacks Against URL
Translation

• URL rewriting is common

• To map URLs to relevant back-end functions

• REST-style parameters

• Custom navigation wrappers

• Others

Apache mod_rewrite
• This rule

• Changes this request

• To this

Attack
• This request

• Changes to this

Injecting into Mail Services

• Apps often send mail via SMTP

• To report a problem

• To provide feedback

• User-supplied information is inserted into the
SMTP conversation

Email Header Manipulation

Injecting a Bcc

SMTP Command Injection
• This feedback request

• Creates this SMTP conversation

Inject into Subject Field

Resulting Spam

Finding SMTP Injection
Flaws

• Inject into every parameter submitted to an
email function

• Test each kind of attack

• Use both Windows and Linux newline
characters

Preventing SMTP Injection
• Validate user-supplied data

iClickers

Which attack sets the same value twice?

A. XXE

B. SOAP injection

C. HTTP Parameter Injection

D. HTTP Parameter Pollution

E. HTTP Redirection

Which attack uses declare a custom DOCTYPE?

A. XXE

B. SOAP injection

C. HTTP Parameter Injection

D. HTTP Parameter Pollution

E. HTTP Redirection

Which attack uses HTML comments?

A. XXE

B. SOAP injection

C. HTTP Parameter Injection

D. HTTP Parameter Pollution

E. HTTP Redirection

