
CNIT 129S: Securing
Web Applications

Ch 1: Web Application (In)security

Updated 1-17-18

Web Applications

• E-commerce, Social networks, Online
banking, etc.

• Fundamental security problem:

• Users can supply arbitrary input

• Malicious input can compromise the site

Static Website: Web 1.0
• Information flows  

one-way

• Users don't log in, shop,  
or submit comments

• An attacker who exploits flaws in the Web server
software can

• Steal data on the Web server (usually only
public data anyway)

• Deface the site

Modern Web App

• Two-way  
information flow

• Users log in,  
submit content

• Content dynamically generated and tailored for
each user

• Much data is sensitive and private (e.g. passwords)

• Most apps developed in-house

• Developers often naive about security

Common Web App
Functions

• Shopping (Amazon)
• Social networking (Facebook)
• Banking (Citibank)
• Web search (Google)
• Auctions (eBay)
• Gambling (Betfair)
• Web logs (Blogger)
• Web mail (Gmail)
• Interactive information (Wikipedia)

Internal Web Apps
("Cloud" Services)

• HR -- payroll information, performance reviews

• Admin interfaces to servers, VMs, workstations

• Collaboration software (SharePoint)

• Enterprise Resource Planning (ERP)

• Email web interfaces (Outlook Web Access)

• Office apps (Google Apps, MS Office Live)

Benefits of Web Apps
• HTTP is lightweight and connectionless

• Resilient in event of communications errors

• Can be proxied and tunneled over other
protocols

• Web browsers run on many devices, highly
functional, easy to use

• Many platforms and development tools available

Web App Security

• Breaches are common

• Attackers gets sensitive data, possibly
complete control of back-end systems

• Denial of Service at Application Level

This Site is Secure

100%
Secure
Online
Voting

• Link Ch 1b

Study by Text Authors

SinVR Hack
• Unauthenticated request

• Link Ch 1f

• Link Ch 1c

• Link Ch 1d

The Core Security Problem
• Users can submit arbitrary input

• Alter parameters, cookies, HTTP headers

• Client-side controls can't be trusted

• Developers must assume all input is
malicious

• Attackers have attack tools like Burp; they are
not restricted to using browsers

Possible Attacks
• Change the price of an item

• Modify a session token to enter another user's
account

• Remove parameters to exploit logic flaws

• SQL injection

• SSL doesn't stop any of these

Key Problem Factors
• Underdeveloped Security Awareness
• Custom Development
• Deceptive Simplicity

• Easy to make a website, but hard to secure it
• Rapidly Evolving Threat Profile
• Resource and Time Constraints
• Overextended Technologies
• Increasing Demands on Functionality

The New Security Perimeter
• Edge firewalls and "bastion hosts" are no longer enough

• Keeping the attacker out of critical systems

• Customers can now send transactions to servers
holding private data

• Via the Web app
• Web app must act as a security barrier

• Often it includes components from others, like widgets

• Errors by other companies can compromise your
servers

• Attackers can attack users instead of servers

• XSS, drive-by downloads, etc.

• E-mail used for password recovery

• A compromised email account exposes many
other services also

The New Security Perimeter

The Future
• Some vulnerabilities

are decreasing

• #1 security
measure: UPDATES

• Logic flaws and
failure to use controls
properly are not
decreasing

• Link Ch 1e

CNIT 129S: Securing
Web Applications

Ch 2: Core Defense Mechanisms

Core Defense Elements
• Limiting user access to app's data and

functionality

• Limiting user input to prevent exploits that use
malformed input

• Frustrating attackers with appropriate behavior
when targeted

• Administrative monitoring and configuring the
application

Handling User Access

• Authentication

• Session management

• Access Control

Authentication
• Username and password is most common

method

• Better: additional credentials and multistage
login

• Best: client certificates, smart cards, challenge-
response tokens

• Also: self-registration, account recovery,
password change

Common Login Problems

• Predictable usernames

• Password that can be guessed

• Defects in logic

Session Management
• Session: a set of data structures that track the state of

the user

• A token identifies the session, usually a cookie

• Can also use hidden form fields or the URL query
string

• Sessions expire

Common Session Problems

• Tokens are predictable (not random)

• Tokens poorly handled, so an attacker can
capture another user's token

Access Control
• Each request must be permitted or denied

• Multiple roles within application

• Frequent logic errors and flawed assumptions

Handling User Input
• "Input Validation" is the most common solution

Types of Input
• Arbitrary text, like blog posts

• Cookies

• Hidden form fields

• Parameters

• HTTP header fields, like User-Agent

"Reject Known Bad"
• Also called "blacklisting"

• Least effective method

• Difficult to identify all bad inputs

"Accept Known Good"

• Also called "whitelisting"

• Most effective technique, where feasible

• However, sometimes you can't do it

• Human names really contain apostrophes, so
you can't filter them out

Sanitization
• Render dangerous input harmless

• HTML-Encoding: Space becomes %20, etc.

• Difficult if several kinds of data may be present
within an item of input

• Boundary validation is better (four slides
ahead)

Safe Data Handling

• Write code that can't be fooled by malicious
data

• SQL parameterized queries

• Don't pass user input to an OS command line

• Effective when it can be applied

Semantic Checks
• Some malicious input is identical to valid input

• Such as changing an account number to
another customer's number

• Data must be validated in context

• Does this account number being to the
currently logged-in user?

Difficulties with Simple Input
Validation

• Data coming from user is "bad" or "untrusted"

• The server-side app is "good" and trusted

• Many different types of input with different filtering
requirements

• Apps may chain several processing steps together

• Data may be harmless at one stage, but be
transformed into harmful data at another stage

Boundary Validation

• Trust boundary

• Divides a trusted zone from an untrusted zone

• Clean data that passes a boundary

• Such as from the user into an application

Boundary Validation

• Each component treats its input as potentially
malicious

• Data validation performed at each trust
boundary

• Not just between client and server

Example

Example SOAP Request

• Link Ch 2a

Boundary Validation
Example

• 1. App gets login: username and password

• Allows only good characters, limits length,
removes known attack signatures

• 2. App performs a SQL query to verify
credentials

• Escape dangerous characters

Boundary Validation
Example

• 3. Login succeeds; app passes data from user
profile to a SOAP service

• XML metacharacters are encoded to block
SOAP injection

• 4. App displays user's account information back
to the user's browser

• User-supplied data is HTML-encoded to block
XSS

Filtering Problems

• App removes this string:

• <script>

• So attacker sends this

• <scr<script>ipt>

Multistep Validation
• App first removes

../

• Then removes

..\

• Attacker sends

....\/

Canonicalization
• App gets URL-encoded data from Web browser

• Apostrophe is %27

• Percent is %25

• To block apostrophes, app filters %27

• But URL is decoded twice by mistake

• %2527 becomes %27 becomes apostrophe

Handling Attackers

• Handling errors

• Maintaining audit logs

• Alerting administrators

• Reacting to attacks

Handling Errors
• Show appropriate error messages

• Unhanded errors lead to overly-informative
error messages like this

Audit Logs
• Authentication events: login success and

failure, change of password

• Key transactions, such as credit card payments

• Access attempts that are blocked by access
control mechanisms

• Requests containing known attack strings

• For high security, log every client request in full

Protecting Logs
• Logs should contain time, IP addresses, and username

• May contain cookies and other sensitive data

• Attackers will try to erase and/or read logs

• Log must be protected

• Place on an autonomous system that only accepts
update messages

• Flush logs to write-once media

Alerting Administrators
• Usage anomalies, like a large number of

requests from the same IP address or user

• Business anomalies, such as a large number of
funds transfers to/from the same account

• Requests containing known attack strings

• Requests where hidden data has been modified

Firewalls
• Web App Firewalls can detect generic attacks

• But not subtle ones that are specific to your
app

• Most effective security control is integrated with
app's input validation mechanisms

• Check for valid values of your parameters

Reacting to Attacks
• Attackers probe for vulnerabilities

• Sending many similar requests

• Automated defenses

• Respond increasingly slowly to requests

• Terminate the attacker's session

Managing the Application
• Management interface allows administrator to

control user accounts, roles, access monitoring,
auditing, etc.

Attacking the Administration
Panel

• Defeat weak authentication

• Some administrative functions might not require
high privileges

• XSS flaws can allow cookie theft and session
hijacking

