
CNIT 129S: Securing
Web Applications

Ch 7: Attacking Session

Management

Updated 3-2-22

Session Management

• Enables application to identify a given user over
a number of different requests

• Ex: login, then later requests

• Fundamental security component

• A prime target for attackers

Session Management

• Potential consequences of session
management attacks

• A user can masquerade as another user

• Privilege escalation to administrator, owning

the entire application

• Can be as simple as incrementing the value of a

token

Wall of Sheep
• My Gmail was

hacked at
Defcon

• By stealing
and replaying
my session
cookie

• Using Hamster
and Ferret

The Need for State

Web 1.0

• Stateless

• Static pages

• No custom content

• No logging in

Logging In

• Allow user to register and log in

• Require a session to maintain the "state" of

being authenticated

• Otherwise user would have to log in to each

page

No Login

• Application with no login function still use
sessions

• Shopping basket

Session Token

• Server's first response contains a Set-Cookie:
header

• Each subsequent request from the client
contains the Cookie: header

Vulnerabilities

• Two categories

• Weakness in generation of session tokens

• Weakness in handling session tokens

throughout their life cycle

Finding the Real Session
Token

• Sometimes a platform like ASP.NET generates a
token but the app doesn't really use it

• To find a token, establish a session and then
replay a request

• Systematically remove each item you suspect

of being the real token

• Wait till response is no longer customized for

your session

• Burp Repeater is good for this

Amazon.com

Original Request

Minimal Request

Alternatives to Sessions

HTTP Authentication

• Basic, Digest, NTLM

• Pass credentials with every request in HTTP

headers

• Not via application-specific code

• Rarely used on Internet-based applications

Sessionless State
Mechanisms

• Application doesn't issue session tokens or
manage the state

• Transmit all data required to manage the state
via the client in a cookie or hidden form field

• Ex: ASP.NET ViewState

• Link Ch 7a

Securing View State

• Data must be protected, usually as a binary blob
that is encrypted or signed

• To prevent re-use on another machine

• ASP.NET View State uses Base64 and a hash
made from a Machine Authentication Code

• Includes the machine's MAC address

• Expiration time enforces session timeouts

Indicators of Sessionless
State Mechanisms

• Token-like data items >=100 bytes long

• New token-like item in response to every
request

• Data is encrypted (structureless) or signed
(structured accompanied by a few random
bytes)

• Application rejects attempts to submit the same
item with more than one request

Weaknesses in Token
Generation

Link Ch 7k

• Password reset uses a 6-digit code

• Guesses are rate-limited on www.facebook.com
• But not on beta.facebook.com
• Got in with Burp Intruder

http://www.facebook.com
http://beta.facebook.com

Token Use Cases
• Password recovery tokens sent to user's
email address

• Tokens in hidden form fields to prevent
cross-site forgery attacks

• Tokens used to grant one-time access to
protected resources

• Persistent tokens used to "remember me"

• Tokens used to allow customers of shopping
application to see the status of an order

Unpredictability

• The security of the application depends on all
those tokens being unpredictable

Meaningful Tokens

• It's just hexadecimal ASCII for

• Easy to guess other token values, like
user=admin

ASCII

• 75 73 65 72

• u s e r

Components in Structured
Tokens

Common Encoding
Schemes

• XOR

• Base64

• Hexadecimal ASCII codes

Hack Steps

• Obtain a single token

• Modify it in systematic ways

• Change it one byte at a time, or one bit at a time

• Resubmit it to see if it's still accepted

• Some fields may be ignored

• Burp Intruder's "char frobber" function

Hack Steps

• Log in as several users at different times

• Record the tokens

• If you can, register similar usernames like A,

AA, AAA, AAAB, etc.

• Try similar series for other data, such as email

addresses

Hack Steps

• Analyze the tokens for correlations

• Look for encoding or obfuscation

• A series of repeating letters like AAA will

produce repeating encoded characters like zzz if
XOR is used

• Base64 often ends in = or ==

Hack Steps

• Use the patterns you've found to try guessing
tokens of other users

• Find a page that is session-dependent

• Use Burp Intruder to send many requests using

guessed tokens

• Monitor results to see if any pages load

correctly

Ch 7a

Predictable Tokens

Patterns
• From a sample of tokens, it may be

possible to predict valid tokens

• Commercial implementations such as

web servers or application platforms may
be more vulnerable

• Because it's easier to gather a large

sample of tokens, from your own test
system

Sequential Tokens

• Burp trying
sequential
payloads

• Winners
shown at to
the top

Three Sources of
Predictable Session Tokens

• Concealed sequences

• Time dependency

• Weak random number generation

Concealed Sequences

• This sequence
appears to be
Base64-encoded

• Decodes to the
gibberish on the
right

Hexadecimal Form
• Render the tokens as

hexadecimal
numbers

• Calculate difference
between sequential
tokens

• For negative
differences, add
0x10000000000 so it
starts with FF

Script to Decode

Generate Valid Tokens

Time Dependency
• Left number simply

increments by 1
each time

• Right number
moves up by a
varying value, as
shown on the right

Another Sample

• Ten minutes later

• First number has jumped

by 6

• Second number has

jumped by 539578

• Ten minutes = 600 sec =

600,000 milliseconds

Attack Steps

• Poll the server frequently to gather session
tokens

• When first number increases by more than 1,
there's another user in between

• We know the second number will be between
the two numbers we have

• Simply brute-force the value

Weak Random Number
Generation

• Jetty is a Java-based Web server

• Calculates pseudorandom session tokens

with a "linear congruential generator"

• Multiplies previous number by a constant,

adds another constant, truncates to 48 bits

• Given one value, all others can be predicted

PHP 5.3.2 and Earlier

• Session token generated from

• Client's IP address

• Epoch time at token creation

• Microseconds at token creation

• Linear congruential generator

phpwn

• The vulnerability was
found in 2001

• But no one wrote a
practical attack tool until
Samy Kamkar in 2010

• Link Ch 7b

Testing the Quality of
Randomness

Algorithm

Burp Sequencer

Results: Red Bits are Non-
Random

Encrypted Tokens

Design Goal
• Token built from meaningful content,

such as username

• Encrypted with a secret key not known to

the attacker

• Sounds good, but sometimes the

attacker can tamper with token's
meaningful values without decrypting
them

ECB Ciphers

• Electronic Code Book

• Input broken up into blocks, often 8 bytes long

• Symmetric encryption, no randomness

• Each input block encodes to a single output

block

• This preserves patterns in input

Image Encrypted with ECB

• Patterns preserved in output

Example of ECB
• Token contains several meaningful fields,

including numeric user id

• Encrypted form appears meaningless

8-Byte Blocks

Copy a Whole Block

• Token is
now for
user 992

Register a New User "daf1"

• Now attacker can target uid=1

CBC Ciphers
• Cipher Block Chain mode

• XORs each block of plaintext with the

preceding block of ciphertext

CBC Ciphers

• Removes all visible
patterns from the apple
logo

Example: CBC
• Token contains uid and other fields

• Encrypted version appears random

Modify a Single Byte of
Ciphertext

Modify a Single Byte of
Ciphertext

• That block will decrypt to junk

• But the next block will remain meaningful, only

slightly altered by the XOR

• Some of the altered blocks will have valid uid

values

Example Altered Values

Modify a Session Token

Flip Each Bit

Fast Method

• 8 requests per byte

• Won't take long to try all single bit flips

• Will confirm whether application is vulnerable

Results

• Some flips
change user id
to "invalid"

• Others reach
real accounts
for other users!

Information Leakage
• Application may re-use the encryption code

elsewhere

• It may allow user to submit arbitrary input and

see the ciphertext

• Such as to create a download link for an

uploaded file

• Submit desired plaintext as a filename, such as

• uid=1

Ch 7b

Weaknesses in Session
Token Handling

Common Myths

• "SSL protects tokens in transmission"

• Some attacks still work, such as XSS

• "Our platform uses mature, sound
cryptography so the token is not
vulnerable"

• But cookie may be stolen in transit

Disclosure on the Network

• Tokens transmitted without encryption

• Can be sniffed from many locations

• User's local network

• Within ISP

• Within IT department of server hosting the

application

Credential Theft v.

Token Theft

• Stealing a user's password may not work

• Two-factor authentication, requiring a

PIN in addition to the password

• Login performed over HTTPS

• Stealing a session token and hijacking
an authenticated session may still work

• And the user won't be notified of a

extra successful login

Not Always HTTPS

• An app may use HTTPS during login

• But use HTTP after login to see authorized

content

• Gmail did this until 2012

• Eavesdropper cannot steal password, but can

steal session token

Upgradeable Token

• App may use HTTP for preauthenticated pages

• Such as the site's front page

• And use HTTPS for login and all subsequent
pages

• But continue to use the same token; upgrade

to an authenticated session

• Attacker can steal the token before login

Back Button

• App uses HTTPS for login and all subsequent
pages

• With a new token

• But user navigates back to an HTTP page with

the Back button

• Exposing the token

sslstrip

• "Log In" link goes to an HTTPS page

• Attacker in the middle alters the page to use

HTTP instead

• And forwards requests to the server via HTTPS

• User won't see any obvious difference in the

page

Mixed Content

• HTTPS page with some HTTP content

• Such as images, style sheets, etc.

• This can send the session token over HTTP

• Browsers now block some mixed-content by

default

Social Engineering

• App uses HTTPS for every page

• Send user an HTTP link via email or IM, or

added to some page the user views

• To http://target.com or http://target.com:443

• Clicking that link may send a session token over
HTTP

Hack Steps

• Walk through the app, from start page, through
login, and all its functionality

• Record every URL and note every session token
you receive

• Note transitions between HTTP and HTTPS

Demo

• After login, send welcome page to
repeater

• Username is in the cookie

Secure Cookies

• If secure flag is set on a cookie, browser will
only send it via HTTPS

• If the connection is only HTTP, that cookie won't
be sent

Setting Secure Cookie
• Valid username and password

• Server sets username2, secure, httponly

Transmitting Secure Cookie

• http session, so username2 is NOT sent

Welcome Page Can't See
Username

Try a Secure Connection
• Go to https://attack.samsclass.info/token.htm

• Cookie sent

• Welcome page

knows my name

httponly

• httponly cookie
cannot be used
by JavaScript

• 23% of websites use HSTS (link Ch 7h)

Disclosure of Tokens in Logs

• Less common as unencrypted network traffic
but more serious

• Logs often visible to more attackers

Google: 
inurl:jsessionid

Where SessionIDs in URL
Will Appear

Referer Attack

• A web mail application transmits session tokens
in the URL

• Send email to targets containing a URL on the
attacker's Web server

• The Referer headers from people who click will
appear in the server logs

Vulnerable Mapping of
Tokens to Sessions

• Allowing users to have two sessions open at the
same time

• Using static tokens (same token is sent to the
user each time they log in)

• Misunderstanding of what a session is

Flawed Logic
• Token value

• But app accepts the same "r1" with a different
"user"

Vulnerable Session
Termination

• A session may remain valid for days after the
last request is received

• Ineffective logout functionality

• Logout merely deletes cookie but does not

invalidate it

• Logout merely runs a client-side script, server

doesn't know a logout has occurred

Token Hijacking
• Cookie theft

• Session fixation: attacker feeds a token to the

user, then user logs in, then attacker hijacks the
session

• Cross-Site Request Forgery (CSRF)

• Tricks user into submitting a request

containing a cookie that goes to an attacker's
server

Liberal Cookie Scope

• When a cookie is set, the server can set the
domain and url (path) the cookie is used for

• By default, all subdomains are included

• Cookie set by games.samsclass.info

• Will be sent to foo.games.samsclass.info

• But NOT to samsclass.info

Specifying the Domain
• App at foo.wahh-app.com sets this cookie:

• A domain can only set a cookie for the same
domain or a parent domain

• And not a top-level domain like .com

Example

• blogs.com sets a cookie for each user

• Each user can create blogs

• joe.blogs.com

• sally.blogs.com

• A blog with JavaScript can steal tokens of other
users who read the attacker's blog

Fix

• There is no way to prevent cookies for an
application from being sent to subdomains

• Solution: use a different domain name for main
app, and scope the domain to this fully qualified
name

• www.blogs.com

• Cookie won't be sent to joe.blogs.com

Path

• Application returns this HTTP header:

• Much stricter than same-origin policy

• Easily defeated by an malicious page on the
same domain (Link Ch 7f)

Securing Session
Management

Securing Session
Management

• Generate Strong Tokens

• Protect them throughout life cycle, from

creation to disposal

Strong Tokens

Strong Tokens

• Tokens should contain no meaning or structure

• All data about the session's owner and status

should be stored on the server in a session
object

• Some random functions, like java.util.Random,
are predictable from a single value

Sources of Entropy
(Randomness)

• Good method:

• Add a secret known only to the server, then

hash it all

• Change the secret on each reboot

Protecting Tokens
Throughout Their Life Cycle

• Only transmit over HTTPS

• secure, httponly

• Use HTTPS for every page in application

• Don't put session tokens in the URL

• Implement a logout function that invalidates

session token on the server

Protecting Tokens
Throughout Their Life Cycle

• Session should expire after a brief period of
inactivity, such as 10 minutes

• Don't allow concurrent logins

• If a user starts a new session, a new token

should be generated, and the old one
invalidated

• Protect diagnostic or administrative functions
that save tokens

• Or don't save tokens in them

Protecting Tokens
Throughout Their Life Cycle

• Restrict domain and path for session cookies

• Audit codebase and remove XSS vulnerabilities

• Don't accept tokens submitted by unrecognized

users

• Cancel tokens after such a request

Protecting Tokens
Throughout Their Life Cycle

• Use two-factor authentication

• Makes cross-site request forgery and other

session-hijacking methods more difficult

• Use hidden fields rather than session cookies

• More difficult to steal because they aren't sent in
every request

Protecting Tokens
Throughout Their Life Cycle

• Create a fresh session after every authentication

• To prevent session fixation attacks

Per-Page Tokens

• A new page token is created every time the user
requests an application page

• Page token verified on every request

• If it doesn't match, the session is terminated

• Prevents pages being used out of order

• And blocks an attacker from using a page at the

same time as a real user

Log, Monitor, and Alert

• Requests with invalid tokens should raise IDS
alerts

• Alert users of incidents relating to their
sessions

Reactive Session
Termination

• Terminate session if a request has

• Modified hidden form field or URL query

string parameter

• Strings associated with SQL injection or XSS

• Input that violates validation checks, such as

length restrictions

Ch 7c

