
CNIT 129S: Securing
Web Applications

Ch 1: Web Application (In)security

Updated 1-19-21

Web Applications

• E-commerce, Social networks, Online
banking, etc.

• Fundamental security problem:
• Users can supply arbitrary input

• Malicious input can compromise the site

Static Website: Web 1.0
• Information flows  

one-way
• Users don't log in,  

shop, or submit comments
• An attacker who exploits flaws in the Web

server software can
• Steal data on the Web server (usually

only public data anyway)
• Deface the site

Modern Web App

• Two-way  
information flow

• Users log in,  
submit content

• Content dynamically generated and tailored for
each user

• Much data is sensitive and private (e.g.
passwords)

• Most apps developed in-house
• Developers often naive about security

Common Web App
Functions

• Shopping (Amazon)
• Social networking (Facebook)
• Banking (Citibank)
• Web search (Google)
• Auctions (eBay)
• Gambling (Betfair)
• Web logs (Blogger)
• Web mail (Gmail)
• Interactive information (Wikipedia)

Internal Web Apps
("Cloud" Services)

• HR -- payroll information, performance reviews

• Admin interfaces to servers, VMs, workstations

• Collaboration software (SharePoint)

• Enterprise Resource Planning (ERP)

• Email web interfaces (Outlook Web Access)

• Office apps (Google Apps, MS Office Live)

Benefits of Web Apps

• HTTP is lightweight and connectionless
• Resilient in event of communications errors
• Can be proxied and tunneled over other

protocols
• Web browsers run on many devices, highly

functional, easy to use
• Many platforms and development tools available

Web App Security

• Breaches are common
• Attackers gets sensitive data, possibly

complete control of back-end systems
• Denial of Service at Application Level

This Site is Secure

• A frequent claim, very far from the truth

100%
Secure
Online
Voting

• Link Ch 1b

Study by Text Authors

SinVR Hack
• Unauthenticated request allows anyone to download

PII from users
• Link Ch 1f

PII

• Link Ch 1c

• Link Ch 1d

The Core Security Problem

• Users can submit arbitrary input
• Alter parameters, cookies, HTTP headers
• Client-side controls can't be trusted
• Developers must assume all input is

malicious
• Attackers have attack tools like Burp; they are

not restricted to using browsers

Possible Attacks

• Change the price of an item
• Modify a session token to enter another user's

account
• Remove parameters to exploit logic flaws
• SQL injection
• SSL doesn't stop any of these

Key Problem Factors
• Underdeveloped security awareness
• Custom development
• Deceptive simplicity

• Easy to make a website, but hard to secure it
• Rapidly evolving threat profile
• Resource and time constraints
• Overextended technologies
• Increasing demands on functionality

The New Security Perimeter
• Edge firewalls and "bastion hosts" are no longer

enough
• Keeping the attacker out of critical systems

• Customers can now send transactions to servers
holding private data

• Via the Web app
• Web app must act as a security barrier
• Often it includes components from others, like

widgets
• Errors by other companies can compromise your

servers

• Attackers can attack users instead of servers
• XSS, drive-by downloads, etc.

• E-mail used for password recovery
• A compromised email account exposes many

other services also

The New Security Perimeter

The Future
• Some vulnerabilities

are decreasing
• #1 security

measure:
UPDATES

• Logic flaws and
failure to use
controls properly are
not decreasing
• Link Ch 1e

Ch 1

CNIT 129S: Securing
Web Applications

Ch 2: Core Defense Mechanisms

Core Defense Elements
• Limiting user access to app's data and

functionality
• Limiting user input to prevent exploits that use

malformed input
• Frustrating attackers with appropriate behavior

when targeted
• Administrative monitoring and configuring the

application

Handling User Access

• Authentication
• Session management
• Access Control

Authentication
• Username and password is most common

method
• Better: additional credentials and multistage

login
• Best: client certificates, smart cards, challenge-

response tokens
• Also: self-registration, account recovery,

password change

Common Login Problems

• Predictable usernames
• Password that can be guessed
• Defects in logic

Session Management
• Session: a set of data structures that track the

state of the user
• A token identifies the session, usually a cookie

• Can also use hidden form fields or the URL
query string

• Sessions expire

Common Session Problems

• Tokens are predictable (not random)
• Tokens poorly handled, so an attacker can

capture another user's token

Access Control
• Each request must be permitted or denied
• Multiple roles within application
• Frequent logic errors and flawed assumptions

Handling User Input
• "Input Validation" is the most common solution

Types of Input

• Arbitrary text, like blog posts
• Cookies
• Hidden form fields
• Parameters
• HTTP header fields, like User-Agent

"Reject Known Bad"
• Also called "blacklisting"

• Least effective method
• Difficult to identify all bad inputs

"Accept Known Good"

• Also called "whitelisting"
• Most effective technique, where feasible
• However, sometimes you can't do it

• Human names really contain apostrophes, so
you can't filter them out

Sanitization

• Render dangerous input harmless
• HTML-Encoding: Space becomes %20, etc.
• Difficult if several kinds of data may be present

within an item of input
• Boundary validation is better (four slides

ahead)

Safe Data Handling

• Write code that can't be fooled by malicious
data
• SQL parameterized queries
• Don't pass user input to an OS command line

• Effective when it can be applied

Semantic Checks

• Some malicious input is identical to valid input
• Such as changing an account number to

another customer's number
• Data must be validated in context

• Does this account number being to the
currently logged-in user?

Difficulties with Simple Input
Validation

• Data coming from user is "bad" or "untrusted"

• The server-side app is "good" and trusted

• Many different types of input with different filtering
requirements

• Apps may chain several processing steps together

• Data may be harmless at one stage, but be
transformed into harmful data at another stage

Boundary Validation

• Trust boundary
• Divides a trusted zone from an untrusted zone

• Clean data that passes a boundary
• Such as from the user into an application

Boundary Validation

• Each component treats its input as potentially
malicious

• Data validation performed at each trust
boundary
• Not just between client and server

Example

Example SOAP Request

• Link Ch 2a

• 1. App gets login: username and password
• Allows only good characters, limits length,

removes known attack signatures
• 2. App performs a SQL query to verify

credentials
• Escape dangerous characters

Boundary Validation Example

Boundary Validation Example

• 3. Login succeeds; app passes data from user
profile to a SOAP service
• XML metacharacters are encoded to block

SOAP injection
• 4. App displays user's account information back

to the user's browser
• User-supplied data is HTML-encoded to block

XSS

Filtering Problems

• App removes this string:
• <script>

• So attacker sends this
• <scr<script>ipt>

Multistep Validation

• App first removes
../

• Then removes
..\

• Attacker sends
....\/

Canonicalization

• App gets URL-encoded data from Web browser
• Apostrophe is %27
• Percent is %25

• To block apostrophes, app filters %27
• But URL is decoded twice by mistake

• %2527 becomes %27 becomes apostrophe

Handling Attackers

• Handling errors
• Maintaining audit logs
• Alerting administrators
• Reacting to attacks

Handling Errors
• Show appropriate error messages
• Unhandled errors lead to overly-informative

error messages like this

Audit Logs

• Authentication events: login success and
failure, change of password

• Key transactions, such as credit card payments
• Access attempts that are blocked by access

control mechanisms
• Requests containing known attack strings
• For high security, log every client request in full

Protecting Logs
• Logs should contain time, IP addresses, and

username
• May contain cookies and other sensitive data

• Attackers will try to erase and/or read logs
• Log must be protected

• Place on an autonomous system that only
accepts update messages

• Flush logs to write-once media

Alerting Administrators

• Usage anomalies, like a large number of
requests from the same IP address or user

• Business anomalies, such as a large number of
funds transfers to/from the same account

• Requests containing known attack strings
• Requests where hidden data has been modified

Firewalls

• Web App Firewalls can detect generic attacks
• But not subtle ones that are specific to your

app
• Most effective security control is integrated with

app's input validation mechanisms
• Check for valid values of your parameters

Reacting to Attacks

• Attackers probe for vulnerabilities
• Sending many similar requests
• Automated defenses

• Respond increasingly slowly to requests
• Terminate the attacker's session

Managing the Application
• Management interface allows administrator to

control user accounts, roles, access monitoring,
auditing, etc.

Attacking the Administration
Panel

• Defeat weak authentication
• Some administrative functions might not require

high privileges
• XSS flaws can allow cookie theft and session

hijacking

Ch 2

