
Ch 9: Mobile Payments

CNIT 128:
Hacking Mobile

Devices
Updated 4-24-17

Current Generation

Scenarios

• Mobile banking apps
• NFC-based or barcode-based payment

apps used by consumers to purchase goods
• Premium-rated SMS messages to purchase

virtual goods within games, or music
– Users are billed later via their telephone bill

Mobile Banking Apps

• Banking transactions using
a phone
– View account balances
– Transfer money

• Web applications
designed to be viewed
within the mobile browser
– Or a WebView inside a

native mobile app

Mobile Banking Apps

• Back-end components are the same as for
desktop online banking

• Similar vulnerabilities
• But with mobile, must also consider

device theft
– Sensitive information may be stored on the

device improperly

Contactless Payment  
Google Wallet

• Started in 2011
• Supports all major

credit cards
• Card # stored in the

cloud
• A virtual account

number is sent to the
contactless POS
terminal via NFC

Contactless Payment  
ISIS (now Softcard)

• Joint venture of Verizon, AT&T, and T-Mobile
– Began in 2012
– Changed its name in 2014 because of the

"Islamic State" (link Ch 9a)

• Purchased by Google in Feb., 2015
• Google Wallet will be prominently

preinstalled on U.S. Android phones that run
KitKat (4.4) or later (link Ch 9e)

Android Pay
• Google's new payment system
• Replaced Google Wallet for most purposes

in 2015
• Google Wallet can no longer use NFC

• No app needed on most phones
• Android Pay is integrated into the OS
– Link Ch 9w

Security of Mobile Payments

• Links Ch 9y, 9z

Security of Mobile Payments

• Should be
safer than
magstripe
cards, which
are very
insecure

• But
customers
are wary
• Link Ch 9x

Apple Pay

• Released on Oct 20, 2014
• With iPhone 6 and Apple

Watch
• Customer payment

information is kept from
retailer

• creates a "dynamic security
code [...] generated for
each transaction"
– Link Ch 9d

Market History

• Google was first, but retailers didn't play
along
– Only 2.4% of retailers had NFC in Oct, 2014

• Chip-and-PIN deadline was Oct. 2015
– Retailers must update POS systems or accept

liability for credit card fraud (link Ch 9c)
– But the USA actually uses Chip-without-PIN
– Security done on the server side

Samsung Pay

• Only available on
Samsung devices

• Works with NFC or
magstripe readers
• 90% of merchants

Samsung Pay

Samsung Pay

• Link Ch 9z1

US Retailers Prefer Apple Pay

• Link Ch 9z2, from Feb., 2017

CurrentC

• A group of merchants (MCX)
– Rite-Aid, CVS, Walmart, Target, etc.

• Saves merchants credit card processing
fees

• Gives stores access to consumer data
– Unlike Apple Pay
– Link Ch 9b, 9h

• Designed for merchants, not end-users

How CurrentC Works

• Tied directly to your bank account
• Pay with QC code

Retailers Supporting CurrentC

CurrentC Collects Health Data

CurrentC Hacked in Oct. 2014

• Email addresses of early testers exposed
– Link Ch 9j

Current-C Died in 2016

• Lin Ch 9z3

Square
• Free card reader or stand
• Plugs into audio jack on iOS

or Android phone
• Takes credit card payments

by reading the magstripe
• Used by Starbucks and

Whole Foods
• Began taking Bitcoin in 2014
• Will take Apple Pay in 2015

Contactless Smartcard
Payments

Secure Element (SE)

• Core of the mobile payment platform
• Secure storage of sensitive information
• Embedded SE contained within the mobile

device
– Galaxy Nexus

• UICC aka SIM card
– Universal Integrated Circuit Card
– Another SE form factor
– Link Ch 9m

microSD Cards with NFC

• Allowed early iPhones
without NFC to use NFC

• NFC radio included in the
microSD card

• Pioneered by
DeviceFidelity

• Purchased by Kili in 2014
• Kili purchased by Square in

2015
– Links Ch 9o, p, q

Java Card Runtime Environment 
(JCRE)

• All SE's use this system
• Payment applet stored on the card
• Applet firewall keeps applets from

accessing each others' information
• Robust cryptography including AES and

RSA
• SE's are GlobalPlatform compliant

• Security and interoperability standards for
SE devices

• Only the owner of an SE can directly read
or write to it
– Mutual identification uses shared keys
– SE will lock after a number of failed attempts

Proximity Payment System Environment
(PPSE)

• Registry of all payment apps in the SE
• App names and standard Application

Identifier
• Tells the payment terminal what apps are

available
• Allows terminal to select which app it

wants to use

Payment Apps

• Responsible for making the actual
contactless payment

• Contain sensitive information associated
with a particular payment account

• Java Card applets that are stored and run
inside the SE

Payment Apps

• Cryptographic capabilities of the JCRE
allow banks to securely verify transactions
– One method is to generate a one-time Card

Verification Value for each transaction, called
a dynamic CVV (dCVV)

• Application Protocol Data Unit (APDU)
– Used to send instructions to applets on the SE

Command Application Protocol
Data Unit (C-APDU)

Large Commands

• If the amount of data to be transmitted to
the applet is greater than 256 bytes

• Multiple C-APDUs can be chained together

Response Application Protocol
Data Unit (R-APDU)

Contact and Contactless Interfaces

• These are the two ways to send APDUs to
the SE

• Contact Interface
– Connects the SE to the phone itself

• Contactless Interface
– Connected to the NFC radio
– Used to communicate with Point-of-Sale (POS)

terminals
– Not available to applications on the phone

Simplified Contactless Transaction

Secure Element API

• Restricted to Google Wallet on Android
– Introduced in 2.3.4 (Gingerbread)
– Required system-level permissions through

4.0 (Ice Cream Sandwich)
– In 4.04, allows apps with a signature in  

 /etc/nfcee_access.xml
– The only signature in that file is Google

Wallet
– Requires root access to update

SE API Limitations
• Very basic—allows application to open a

channel to the SE and transmit APDUs
• Works for embedded SE's
– But not for the UICC or microSD SE's used in some

phones
– For microSD SE's, you need the open-source

Secure Element Evaluation Kit (SEEK)
– UICC SE's is not directly connected to the

application processor and must be reached
through the proprietary code and the Radio
Interface Layer

Access Control for SE's

• Embedded SE's use a whitelist
– /etc/nfcee_access.xml

• SEEK uses GlobalPayment
– An additional app on the SE with a list of

application signatures and applets

• Smartcard API contains Access Control
Enforcer
– Compares signature of calling application to

signature stored in the SE card to see if
application has permission for the chosen applet

Mobile Application

• Consumers see this part
• User selects which card to use for a

payment
• Google Wallet requires the user to enter a

four-digit PIN to make a payment
– Protects against device theft
– Better than contactless credit cards

Google Wallet Vulnerabilities

PIN Storage Vulnerability

• PIN entry required for transactions
• Only six tries permitted
• But an attacker who steals a device and

then roots it can extract the PIN from the
salted hash
– Because it's not stored on the SE
– Storing it on the SE would make banks liable

for breaches due to stolen PINs
– Links Ch 9s, 9t

• Link Ch 9t (2012)

PIN Storage

• PIN is salted with a 64-bit random value
and hashed with one round of SHA-256

Storage of Hash

• Salt and hash stored in a SQLite database
in Google Wallet's /data directory
– /data/data/

com.google.android.apps.walletnfcrel/
databases/walletDatastore

• "Wallet Cracker" simply tries all 10,000
four-digit PINs to find PIN from the hash

Google's Response

• Don't run Google Wallet on rooted phones
– Not very reassuring since the thief can root

your phone

• Much better to perform PIN storage and
verification on the SE
– Also store the PIN try counter on the SE

Countermeasures for Google Wallet
Cracker

• Don't root your device
• Enable Android lock screen
• Disable ADB debugging
• Keep up-to-date with patches

Relay Attacks (MITM)

• "Mole" reader gets close to target mobile device
• Attacker's mobile gets near POS terminal
• APDUs are passed via TCP/IP

Relay Attack Limitations

• Target's mobile payment app must be
unlocked

• Google Wallet requires entry of a PIN to
unlock

Relay Through a Malicious App

• Works against
Google Wallet

• Because it
exposes
payment
credentials to
the contact
interface

• Requires root
privileges to
bypass SE API
signature
authentication

Relay Attack Countermeasures

• Contactless POS terminals should enforce a time-
out on all transactions
– Relay attack requires network communications which

slows it down
– Not very practical because errors can cause delays in

legitimate transactions
• Use location information to flag suspicious

transactions
– Target mobile is not really near the POS
– Requires target GPS to be active and consumer's

consent

Relay Attack Countermeasures

• Google Wallet is no longer vulnerable to
the second attack
– It no longer exposes payment applets over

the contact interface

Square Vulnerabilities

Square

• Square Register
– Mobile app

• Magnetic stripe reader
– Plugs into audio jack
– Free

• Allows anyone to take credit card
transactions
– Charging 2.75% of each transaction

EMV (Europay, MasterCard and Visa) aka
Chip-and-PIN

• Square reader has two slots
• Can use magstripe or chip

Skimming

• Any app that can receive audio data can
steal the magnetic data from the Square
device

• VeriFone released an app to do this
– In order to compete with Square

Verifone v. Square

• Link Ch 9u

Skimming Countermeasures

• Manual skimming requires the card
– Same as skimmers that have been used for years

• A software attack against the reader could
do more harm

• In 2012, Square modified their reader to
encrypt the audio stream
– Encrypted data is sent to Square's servers and

decrypted there
– Prevents rogue apps getting the credit card #

Replay Attack

• Malicious app could record audio stream and
replay is back to make another purchase

• Demonstrated by Adam Laurie and Zac
Franken at Black Hat in 2011
– Also reverse-engineered the format Square

reader uses for data from credit card
– They could manufacture correct audio streams

from magnetic Track 2 data, which can be
purchased on the black market

Replay Attack

• They could therefore use Square to
perform mass fraud
– Instead of manufacturing fake credit cards

Replay Attack Countermeasures

• Square's encryption prevents this
• Textbook author verified that replaying an

encrypted audio stream is not accepted as
a valid Square transaction anymore

• So Square is changing the key, or using a
nonce, or something similar

