Ch 8: Mobile Development
Security

' N"Nﬂ CNIT 128:
Hacking Mobile
NP

Devices

Securily Seorets § Sulutluns@ Revised 4-12-17

App Security Constraints

 Built-in security features of the mobile
platform

 Possibility of device theft

Mobile App Threat Modeling

Threat Modeling

A pencil-and-paper exercise
|ldentifying security risks

Helps developer identify most critical
risks

Focus on features and/or controls to
mitigate those risks

The alternative is endless, aimless, bug-
squashing

Threat Modeling Technologies

* Microsoft Threat Modeling
— From 1999 (link Ch 8a)
* Trike

— Open-source, began in 2006
(link Ch 8b)

— More traditional risk
management philosophy

Threat Modeling Technologies

 OCTAVE (Operationally Critical Threat,
Asset, and Vulnerability Evaluation)

— From CERT (link Ch 8c)

» Cigital Threat Modeling
— Based on software architecture (link Ch 8d)

 PA.S.T.A. (Process for Attack Simulation
and Threat Analysis)

Similar Approach

Diagram the app
Understand where information assets flow

Document risks to the assets and security
controls

Rank the risks by probability and impact
Remediate and verify highest-scored risks

Example: Adding a Mobile Client to an
Existing Web App

* New client will support end users and
Customer Support Representatives (CSRs)

* How do existing threats change when a
mobile app is added?
— Enumerate threats
— QOutline assets mobile devices possess

— Discuss how the mobile tech stacks create
opportunities for threats

(User)
browser

Rate

aggregation

\

CSR
browser

Browser

A
pp3

Smartphone 4

Internet

Internet

|

Carrier
network

Internet

ACH verify
MQ

Rest

Banking app

Websphere

(Mobile
facade)
banking app

LDAP

Tomcat

DB

Threats

Web app hacking tools
Bluetooth and 802.11 attacks

Injecting code into a mobile browser
— Man-in-The-Browser (MiTB)

Malicious apps

— Malware and Trojans

Femtocells
— Observe all traffic

Threats from Phone's User

* Download your app and reverse-engineer
it

 Jailbreak the device, subverting controls
you depend on

* Thieves may steal the device and gain
access to the Ul and physical interfaces
such as USB

1. Users as Threats

* What evil or insidious things could a user
do?
— Steal encryption keys or credentials from
apps
— Reverse-engineer apps

* What obnoxious or stupid things could a
user do to cause trouble?

Other Device "Owners"” as Threats

 Other stakeholders
— App store account owner

— App publisher, who provides the user
experience and access to mobile services

— Mobile carrier, e.g. AT&T
— Device manufacturer: Samsung, etc.

— App store curator: Apple, Google, Amazon,
etc.

— Company's IT dept. that administers the device

Importance of Other Stakeholders

» Operate apps and underlying software
* Control credentials
* Operate services

* Carriers and handset manufacturers place
apps on the device

— May customize the OS
— May place code beneath the OS in firmware

Importance of Other Stakeholders

the a
— Pac

App store curators control a large portion of

op lifecycle
kaging and deployment

— Upc
When

ate and removal
stakeholder goals differ

— Opportunity for one "owner” to do something
that another stakeholder considers a violation
of security or privacy

— Like collecting and storing personal information

Assets

» Each stakeholder protects its assets

* End-users may value privacy

* App publisher and carrier want to collect
and use personal and usage information

Types of Data

« Offline access

— Available when phone is not connected to a
network

* Personal data
— Contacts, voicemails

» Sensor-based data
— Location data (GPS and tower telemetry)
— Camera and microphone data

ldentity Data

* App publishers are reluctant to force
users to authenticate using small virtual
keyboards

* |dentity data includes
— Persistent credentials
— Bearer tokens (such as OAuth)

— Usernames

— Device-, user-, or application-specific UUIDs

Usernames

 If a web-based service uses a mobile
device for "out-of-band” password reset

* And a user has an app for that service

« Attacker with a stolen phone can reset
the password

Threat Modeling

Derive the attack surface and potential
attacks

— List assets and stakeholders

— Brainstorm how each stakeholder might cause
a security or privacy breach for another

Prioritize attacks by likelihood and impact
Implement mitigations

Use the list of attacks to drive Secure
Software Development Lifecycle

Secure Mobile Development
Guidance

Threat modeling

* Mobile app has two main components
— Mobile client
— Mobile Web services that support it

 Both can be attacked

Native APIls or Mobile Web?

* Apps written specifically for the platform, using
native APlIs

— Take full advantage of the platform's features
— User interface consistent with platform
* Mobile Web apps

— Same as web app, but optimized for a smaller
screen

» Cross-platform mobile development frameworks
try to provide the best of both worlds

Device and Runtime Environment
Integrity

 How can an app ensure that the OS hasn't
been modified?
— Or even the app itself?

* Mobile Device Management
— Provides some assurance

* App integrity protection
— Anti-debugging and code obfuscation

Limitations of Integrity Assurance

If device is jailbroken or rooted
— Environment can lie about what's happening

Mobile Application Management (MAM)
— Some provide private app stores

— For closed-loop provisioning, patching,
uninstallation, monitoring, and remote data
wipe

Maintaining/Patching your App

— The app store is the main channel for updates

Secure Mobile App Guidelines

Category Security Considerations

Traditional web Secure mobile services with web application security
application security Creating a walled garden for mobile access

(plus) Reducing session timeout for mobile sessions

Using a secure JavaScript subset
Masking or tokenizing sensitive data
Storing sensitive data Avoid it!
on the device Mobile device sensitive data
Security hardware
Secure platform storage
Mobile databases
File system protections

Authenticating to Authorization and authentication protocols

mobile services Always generate your own identifiers
Implement a timeout for cached credentials

Secure Use only SSL/TLS

communications Validate server certificates

Use certificate pinning for certificate validation
WebView interaction ~ WebView cache

WebView and JavaScript bridges
Preventing Clipboard
information leakage Logs

Secure Mobile App Guidelines

Additional i0S Traditional C application secure coding guidelines
platform-specific Keyboard cache
guidelines Enable full ASLR using PIE

Custom URI schemes guidelines

Protect the stack

Enable automatic reference counting
Disable caching of application screenshots

Additional Android Traditional C++/Java application secure coding guidelines
platform-specific Ensure ASLR is enabled
guidelines Secure intent usage guidelines

Secure NFC guidelines

Secure Mobile App Guidelines

* Web app security
— OWASP Top Ten

* Create a walled garden

— Requests to Web app should parse the user-agent
string to detect mobile requests

— Redirect traffic to mobile interfaces/services

— Don't serve mobile apps same content as
computers

— Legacy content may be aggressively cached by
mobile browsers

Secure Mobile App Guidelines

* Reduce session timeout for mobile devices
— Greater risk of MiTM attacks
— Greater risk of device theft
» Use a secure JavaScript subset
— Remove eval(), square brackets, "this"
— Secure JavaScript subsets:

Resource Link

ADSafe adsafe.org

dojox.secure dojotoolkit.org/reference-guide /1.8 /dojox/secure.html
Caja code.google.com/p/google-caja/

Microsoft Web Sandbox websandbox.livelabs.com/

The Dangers of Square Bracket Notation

Issue #1: Bracket object notation with user input grants
access to every property available on the object.

exampleClass [userInput[1]] = userInput[2]

e |t can even lead to remote code execution
— Link Ch 8f

Secure Mobile App Guidelines

* Mask or Tokenize Sensitive Data
— Mobile devices have aggressive data caching
— Increased risk of data exposure

— Replace sensitive data with an alternate
representation "mask” or "token”

Secure Mobile App Guidelines

 Storing sensitive data on the device
— Avoid storing sensitive data when possible

— Places to store data, strongest to weakest
« Security hardware
 Secure platform storage
* Mobile databases
* File system

Mobile Device Sensitive Data

* Personal data
— Contacts, pictures, call data, voicemails, etc.

* Sensor-based data
— GPS, camera, microphone
* |dentity data
— Persistent credentials
— Bearer tokens (like OAuth)
— Usernames
— Device-, user-, or application-specific UUIDs

Security Hardware

* Secure Element (SE) microprocessor
— Used for mobile payment systems

— Accessed using existing smartcard standards
 ISO 7816 (contact)
« |SO 14443 (contactless)

— Considered fairly secure

— Locks out after 5 to 10 failed PIN attempts
« When used for a virtual wallet

— BUT general-purpose apps don't have access to
the SE

1ISO 14443 MIFARE

» Used by BART and Boston T system
* MIFARE Classic used a 48-bit key

* Several vulnerabilities have been found

CharlleCard ’

Anatomy

of a

Subway.Hack

>
, ~ '..'. g

{ Russell Ryan

__Zack Anderson

Alessandro Chiesa
S

 Link Ch 8k

Secure Platform Storage

* Apple's keychain
— SQLite database
— Protected by an OS service that limits access

— Keychain items can only be accessed by the
app that stored them

* And other apps from the same developer
« BUT root user can read the keychain

Keychain Weakness

* Root user can read everything in the
keychain
— Link Ch 8l

New open-source app extracts passwords
stored in Mac OS X keychain

Proof-of-concept Keychaindump extracts passwords for all logged-in users.

by Dan Goodin - Sep 6, 2012 804am FOT

01 Share | Tweet | 135 |

P security wants to use the "login® keychain.

. Please enter the keychain pasy word

Password: r|

Android KeyStore

 Intended to store cryptographic keys

* Has no inherent protection mechanism
such as a password

* Apps must provide a mechanism like this
to protect sensitive information;

— Password from user

— Use Password-Based Key Derivation Function 2
(PBKDF2) to generate an AES key

— Encrypt data with AES

Mobile Databases

» Database can be encrypted with a single
secret with third-party extensions to SQLite

— SEE, SQLCipher, CEROD

* Apparently innocent data may expose
personal identity
— Such as images

* SQL injection attacks are possible
— Via intents or network traffic
— S0 use parameterized queries

File System Protections in i0S

Default encryption of files on the data
partition

Centrally erasable metadata

Cryptographic linking to a specific device, so
files moved from one device to another are
unreadable without the key

Enabled by default in i0S 5 and above
Apple's i0S Security White Paper (link Ch 8m)

File System Protections in Android

 Files stored in internal storage are private
to the app that created them

— Unless the app changes the default Linux file
permissions or uses MODE_WORLD_WRITEABLE

or MODE_WORLD_READABLE

* Files stored in external storage (such as
SD cards) are accessible to all applications

* Android 3.0 and later provides file-system
encryption

Google's ‘'encrypted-by-default’ Android is
NOT encrypting by default

It's sad that this isn't really a surprise

Google got in touch with us after publication to say:

In September, we announced that all new Android Lollipop devices would be encrypted by
default. Due to performance issues on some Android partner devices we are not yet at
encryption by default on every new Lollipop device.

That said, our new Nexus devices are encrypted by default and Android users (Jelly Bean
and above) have the option to encrypt the data on their devices in Settings ---> Security ---
>Encryption. We remain firmly committed to encryption because it helps keep users safe and
secure on the web.

 From March 2, 2015
— Link Ch 80

Authenticating to Mobile Services

 As previously covered, OAuth and SAML
make it possible to avoid storing or using
a password in your mobile app

— As if any developers cared...

Always Generate Your Own ldentifiers

Apps have used existing identifiers like
— IMEI number, MAC address, phone number, etc.

To identify users and devices

But what happens when a device is stolen or
sold?

Also such identifiers often lack secrecy and
entropy

— Phone number is often publicly listed on Facebook,
etc.

More Recommendations

* Implement a Timeout for Cached
Credentials
— Good for security but inconvenient

— Rarely done
e Secure Communications

— Use Only TLS

— Direct HTTPS communications resist man-in-
the-middle attacks including sslstrip

* Validate Server Certificates

Use Certificate Pinning for Validating

Certificates

Adds another step to verifying
certificate

a server

Compares the certificate to a trusted copy

of the certificate included in t

Exploits the special relationshi
the app and the server

ne app

) between

The app can be more secure than a Web
browser because it knows which server it

should be connecting to

WebView Interaction

« WebView Cache Threats

— May contain sensitive web form and
authentication pages

— If a user chooses to save credentials in the
browser, they are in the cache

— WebView cookies database could be used to
hijack sessions with banks and other websites

WebView Interaction

* WebView Cache Mitigations
— Disable autocomplete on all sensitive form
inputs
— Set no-cache HTTP header on server

— WebView object on the client side can be set to
never save authentication data and form data

— Use clearCache() method to delete files stored
locally on the device

— On Android, you must delete files explicitly
because clearCache() doesn't erase them all

WebView Interaction

* WebView Cache Mitigations

— To reduce the risk from cached cookies, set up
a session timeout on the server

— Cookies should never be set to persist for a long
time
— To clear cookies on the client, use the

CookieManager or the NSHTTPCookieStorage
classes

—0On 10S, use NSURLCache to remove cached
responses

WebView and JavaScript Bridges

* On Android, protect against reflection-
based attacks by targeting APl 17 or above

 On older devices:

— Only use addJavaScriptinterface if really
needed

— Develop a custom JavaScript bridge with
shouldOverrideUrlLoading

— Reconsider why you need a bridge and
remove it if feasible

WebView Countermeasures

* If an app uses a custom URI scheme
— Be careful what functionality is exposed

— Use input validation and output encoding to
prevent injection attacks

Preventing Information Leakage

» Clipboard

— Android and i0OS support copy-and-paste
— Access to clipboard is fairly unrestricted

— Take explicit precautions to avoid sensitive
data entering the clipboard

— On Android, cell setLongClickable(false) on a
field

— 0On i0S, subclass UlTextView to disable copy/
paste

Preventing Information Leakage

* Logs
— Watch for sensitive data in system and debug
logs
— Or the device driver dmesg buffer

— Any Android app with the READ_LOGS
permission can view the system log

— 0On i0S, disable NSLog statements

— X:Y coordinate buffers can expose PINs or
passwords

10S-Specific Guidelines

10S-Specific Guidelines

» Keyboard cache

— MDMs can add an enterprise policy to clear
the keyboard dictionary at regular intervals

— Users can do this with Settings, General,
Reset, "Reset Keyboard Dictionary”

 Enable full ASLR

— Usually on by default

— Sometimes developer must explicitly code for
it

10S-Specific Guidelines

 Custom URI Scheme Guidelines

— Use openURL instead of the deprecated
handleOpenURL

— Validate the sourceApplication parameter to
restrict access to the custom URI to a specific
set of applications

— Validate the URL parameter; assume it
contains malicious input

10S-Specific Guidelines

* Protect the stack

— With gcc, use -fstack-protector-all to enable
Stack Smashing Protection (SSP)

— Apple LLVM compiler automatically enables SSP

* Enable automatic reference counting

— Automatically manages memory for Objective-C
objects and blocks

— Reduces chance of use-after-free vulnerabilities
— And other C memory-allocation problems

10S-Specific Guidelines

Disable caching of application screenshots

—i0S captures the screen when an app is
suspendec

— Such as when user clicks the Home button or the
Sleep/Wake button

— Or the system launches another app
— It does this to show transition animations
— This could capture sensitive data

— Prevent this by specifying a splash screen to
display upon entering the background

Android-Specific Guidelines

Android-Specific Guidelines

» Traditional C++/Java secure coding

— Google recommends using Java rather than C
++; it's more secure

 Ensure ASLR is Enabled

— C and C++ must be compiled and linked with
PIE

Secure Intent Usage

Public components should not trust data received
from intents

Perform input validation on all data from intents
Use explicit intents where possible
Only export components if necessary

Create a custom signature-protection-level
permission to control access to implicit intents

Use a permission to limit receivers of broadcast
intents

Don't put sensitive data in broadcast intents

Android-Specific Guidelines

» Secure NFC guidelines
— Don't trust data from NFC tags
— Perform input validation

— Write-protect a tag before it is used to
prevent it from being overwritten

» Test your controls
— Make sure every setting is really working

