
Ch 8: Mobile Development
Security

CNIT 128:
Hacking Mobile

Devices
Revised 4-12-17

App Security Constraints

• Built-in security features of the mobile
platform

• Possibility of device theft

Mobile App Threat Modeling

Threat Modeling

• A pencil-and-paper exercise
• Identifying security risks
• Helps developer identify most critical

risks
• Focus on features and/or controls to

mitigate those risks
• The alternative is endless, aimless, bug-

squashing

Threat Modeling Technologies

• Microsoft Threat Modeling
– From 1999 (link Ch 8a)

• Trike
– Open-source, began in 2006

(link Ch 8b)
– More traditional risk

management philosophy

Threat Modeling Technologies

• OCTAVE (Operationally Critical Threat,
Asset, and Vulnerability Evaluation)
– From CERT (link Ch 8c)

• Cigital Threat Modeling
– Based on software architecture (link Ch 8d)

• P.A.S.T.A. (Process for Attack Simulation
and Threat Analysis)

Similar Approach

• Diagram the app
• Understand where information assets flow
• Document risks to the assets and security

controls
• Rank the risks by probability and impact
• Remediate and verify highest-scored risks

Example: Adding a Mobile Client to an
Existing Web App

• New client will support end users and
Customer Support Representatives (CSRs)

• How do existing threats change when a
mobile app is added?
– Enumerate threats
– Outline assets mobile devices possess
– Discuss how the mobile tech stacks create

opportunities for threats

Threats

• Web app hacking tools
• Bluetooth and 802.11 attacks
• Injecting code into a mobile browser
– Man-in-The-Browser (MiTB)

• Malicious apps
– Malware and Trojans

• Femtocells
– Observe all traffic

Threats from Phone's User

• Download your app and reverse-engineer
it

• Jailbreak the device, subverting controls
you depend on

• Thieves may steal the device and gain
access to the UI and physical interfaces
such as USB

1. Users as Threats

• What evil or insidious things could a user
do?
– Steal encryption keys or credentials from

apps
– Reverse-engineer apps

• What obnoxious or stupid things could a
user do to cause trouble?

Other Device "Owners" as Threats

• Other stakeholders
– App store account owner
– App publisher, who provides the user

experience and access to mobile services
– Mobile carrier, e.g. AT&T
– Device manufacturer: Samsung, etc.
– App store curator: Apple, Google, Amazon,

etc.
– Company's IT dept. that administers the device

Importance of Other Stakeholders

• Operate apps and underlying software
• Control credentials
• Operate services
• Carriers and handset manufacturers place

apps on the device
– May customize the OS
– May place code beneath the OS in firmware

Importance of Other Stakeholders

• App store curators control a large portion of
the app lifecycle
– Packaging and deployment
– Update and removal

• When stakeholder goals differ
– Opportunity for one "owner" to do something

that another stakeholder considers a violation
of security or privacy

– Like collecting and storing personal information

Assets

• Each stakeholder protects its assets
• End-users may value privacy
• App publisher and carrier want to collect

and use personal and usage information

Types of Data

• Offline access
– Available when phone is not connected to a

network

• Personal data
– Contacts, voicemails

• Sensor-based data
– Location data (GPS and tower telemetry)
– Camera and microphone data

Identity Data

• App publishers are reluctant to force
users to authenticate using small virtual
keyboards

• Identity data includes
– Persistent credentials
– Bearer tokens (such as OAuth)
– Usernames
– Device-, user-, or application-specific UUIDs

Usernames

• If a web-based service uses a mobile
device for "out-of-band" password reset

• And a user has an app for that service
• Attacker with a stolen phone can reset

the password

Threat Modeling

• Derive the attack surface and potential
attacks
– List assets and stakeholders
– Brainstorm how each stakeholder might cause

a security or privacy breach for another

• Prioritize attacks by likelihood and impact
• Implement mitigations
• Use the list of attacks to drive Secure

Software Development Lifecycle

Secure Mobile Development
Guidance

Threat modeling

• Mobile app has two main components
– Mobile client
– Mobile Web services that support it

• Both can be attacked

Native APIs or Mobile Web?

• Apps written specifically for the platform, using
native APIs
– Take full advantage of the platform's features
– User interface consistent with platform

• Mobile Web apps
– Same as web app, but optimized for a smaller

screen

• Cross-platform mobile development frameworks
try to provide the best of both worlds

Device and Runtime Environment
Integrity

• How can an app ensure that the OS hasn't
been modified?
– Or even the app itself?

• Mobile Device Management
– Provides some assurance

• App integrity protection
– Anti-debugging and code obfuscation

Limitations of Integrity Assurance

• If device is jailbroken or rooted
– Environment can lie about what's happening

• Mobile Application Management (MAM)
– Some provide private app stores
– For closed-loop provisioning, patching,

uninstallation, monitoring, and remote data
wipe

• Maintaining/Patching your App
– The app store is the main channel for updates

Secure Mobile App Guidelines

Secure Mobile App Guidelines

Secure Mobile App Guidelines

• Web app security
– OWASP Top Ten

• Create a walled garden
– Requests to Web app should parse the user-agent

string to detect mobile requests
– Redirect traffic to mobile interfaces/services
– Don't serve mobile apps same content as

computers
– Legacy content may be aggressively cached by

mobile browsers

Secure Mobile App Guidelines

• Reduce session timeout for mobile devices
– Greater risk of MiTM attacks
– Greater risk of device theft

• Use a secure JavaScript subset
– Remove eval(), square brackets, "this"
– Secure JavaScript subsets:

The Dangers of Square Bracket Notation

• It can even lead to remote code execution
– Link Ch 8f

Secure Mobile App Guidelines

• Mask or Tokenize Sensitive Data
– Mobile devices have aggressive data caching
– Increased risk of data exposure
– Replace sensitive data with an alternate

representation "mask" or "token"

Secure Mobile App Guidelines

• Storing sensitive data on the device
– Avoid storing sensitive data when possible
– Places to store data, strongest to weakest
• Security hardware
• Secure platform storage
• Mobile databases
• File system

Mobile Device Sensitive Data

• Personal data
– Contacts, pictures, call data, voicemails, etc.

• Sensor-based data
– GPS, camera, microphone

• Identity data
– Persistent credentials
– Bearer tokens (like OAuth)
– Usernames
– Device-, user-, or application-specific UUIDs

Security Hardware

• Secure Element (SE) microprocessor
– Used for mobile payment systems
– Accessed using existing smartcard standards

• ISO 7816 (contact)
• ISO 14443 (contactless)

– Considered fairly secure
– Locks out after 5 to 10 failed PIN attempts

• When used for a virtual wallet

– BUT general-purpose apps don't have access to
the SE

ISO 14443: MIFARE

• Used by BART and Boston T system
• MIFARE Classic used a 48-bit key
• Several vulnerabilities have been found

• Link Ch 8k

Secure Platform Storage

• Apple's keychain
– SQLite database
– Protected by an OS service that limits access
– Keychain items can only be accessed by the

app that stored them
• And other apps from the same developer
• BUT root user can read the keychain

Keychain Weakness

• Root user can read everything in the
keychain
– Link Ch 8l

Android KeyStore

• Intended to store cryptographic keys
• Has no inherent protection mechanism

such as a password
• Apps must provide a mechanism like this

to protect sensitive information;
– Password from user
– Use Password-Based Key Derivation Function 2

(PBKDF2) to generate an AES key
– Encrypt data with AES

Mobile Databases

• Database can be encrypted with a single
secret with third-party extensions to SQLite
– SEE, SQLCipher, CEROD

• Apparently innocent data may expose
personal identity
– Such as images

• SQL injection attacks are possible
– Via intents or network traffic
– So use parameterized queries

File System Protections in iOS

• Default encryption of files on the data
partition

• Centrally erasable metadata
• Cryptographic linking to a specific device, so

files moved from one device to another are
unreadable without the key

• Enabled by default in iOS 5 and above
• Apple's iOS Security White Paper (link Ch 8m)

File System Protections in Android

• Files stored in internal storage are private
to the app that created them
– Unless the app changes the default Linux file

permissions or uses MODE_WORLD_WRITEABLE
or MODE_WORLD_READABLE

• Files stored in external storage (such as
SD cards) are accessible to all applications

• Android 3.0 and later provides file-system
encryption

• From March 2, 2015
– Link Ch 8o

Authenticating to Mobile Services

• As previously covered, OAuth and SAML
make it possible to avoid storing or using
a password in your mobile app
– As if any developers cared...

Always Generate Your Own Identifiers

• Apps have used existing identifiers like
– IMEI number, MAC address, phone number, etc.

• To identify users and devices
• But what happens when a device is stolen or

sold?
• Also such identifiers often lack secrecy and

entropy
– Phone number is often publicly listed on Facebook,

etc.

More Recommendations

• Implement a Timeout for Cached
Credentials
– Good for security but inconvenient
– Rarely done

• Secure Communications
– Use Only TLS
– Direct HTTPS communications resist man-in-

the-middle attacks including sslstrip

• Validate Server Certificates

Use Certificate Pinning for Validating
Certificates

• Adds another step to verifying a server
certificate

• Compares the certificate to a trusted copy
of the certificate included in the app

• Exploits the special relationship between
the app and the server

• The app can be more secure than a Web
browser because it knows which server it
should be connecting to

WebView Interaction

• WebView Cache Threats
– May contain sensitive web form and

authentication pages
– If a user chooses to save credentials in the

browser, they are in the cache
–WebView cookies database could be used to

hijack sessions with banks and other websites

WebView Interaction

• WebView Cache Mitigations
– Disable autocomplete on all sensitive form

inputs
– Set no-cache HTTP header on server
–WebView object on the client side can be set to

never save authentication data and form data
– Use clearCache() method to delete files stored

locally on the device
– On Android, you must delete files explicitly

because clearCache() doesn't erase them all

WebView Interaction

• WebView Cache Mitigations
– To reduce the risk from cached cookies, set up

a session timeout on the server
– Cookies should never be set to persist for a long

time
– To clear cookies on the client, use the

CookieManager or the NSHTTPCookieStorage
classes

– On iOS, use NSURLCache to remove cached
responses

WebView and JavaScript Bridges

• On Android, protect against reflection-
based attacks by targeting API 17 or above

• On older devices:
– Only use addJavaScriptInterface if really

needed
– Develop a custom JavaScript bridge with

shouldOverrideUrlLoading
– Reconsider why you need a bridge and

remove it if feasible

WebView Countermeasures

• If an app uses a custom URI scheme
– Be careful what functionality is exposed
– Use input validation and output encoding to

prevent injection attacks

Preventing Information Leakage

• Clipboard
– Android and iOS support copy-and-paste
– Access to clipboard is fairly unrestricted
– Take explicit precautions to avoid sensitive

data entering the clipboard
– On Android, cell setLongClickable(false) on a

field
– On iOS, subclass UITextView to disable copy/

paste

Preventing Information Leakage

• Logs
–Watch for sensitive data in system and debug

logs
– Or the device driver dmesg buffer
– Any Android app with the READ_LOGS

permission can view the system log
– On iOS, disable NSLog statements
– X:Y coordinate buffers can expose PINs or

passwords

iOS-Specific Guidelines

iOS-Specific Guidelines

• Keyboard cache
– MDMs can add an enterprise policy to clear

the keyboard dictionary at regular intervals
– Users can do this with Settings, General,

Reset, "Reset Keyboard Dictionary"

• Enable full ASLR
– Usually on by default
– Sometimes developer must explicitly code for

it

iOS-Specific Guidelines

• Custom URI Scheme Guidelines
– Use openURL instead of the deprecated

handleOpenURL
– Validate the sourceApplication parameter to

restrict access to the custom URI to a specific
set of applications

– Validate the URL parameter; assume it
contains malicious input

iOS-Specific Guidelines

• Protect the stack
–With gcc, use –fstack-protector-all to enable

Stack Smashing Protection (SSP)
– Apple LLVM compiler automatically enables SSP

• Enable automatic reference counting
– Automatically manages memory for Objective-C

objects and blocks
– Reduces chance of use-after-free vulnerabilities
– And other C memory-allocation problems

iOS-Specific Guidelines

• Disable caching of application screenshots
– iOS captures the screen when an app is

suspended
– Such as when user clicks the Home button or the

Sleep/Wake button
– Or the system launches another app
– It does this to show transition animations
– This could capture sensitive data
– Prevent this by specifying a splash screen to

display upon entering the background

Android-Specific Guidelines

Android-Specific Guidelines

• Traditional C++/Java secure coding
– Google recommends using Java rather than C

++; it's more secure

• Ensure ASLR is Enabled
– C and C++ must be compiled and linked with

PIE

Secure Intent Usage

• Public components should not trust data received
from intents

• Perform input validation on all data from intents
• Use explicit intents where possible
• Only export components if necessary
• Create a custom signature-protection-level

permission to control access to implicit intents
• Use a permission to limit receivers of broadcast

intents
• Don't put sensitive data in broadcast intents

Android-Specific Guidelines

• Secure NFC guidelines
– Don't trust data from NFC tags
– Perform input validation
–Write-protect a tag before it is used to

prevent it from being overwritten

• Test your controls
– Make sure every setting is really working

