
Ch 7: Mobile Device
Management

CNIT 128:
Hacking Mobile

Devices
Updated 4-4-17

What is MDM?

• Frameworks that control, monitor, and
manage mobile devices

• Deployed across enterprises or service
providers

• Provide these functions remotely:
– Monitoring
– Control
– Manage

MDM Frameworks

• Policies and features that administrators
can control and enforce

• iOS, Android and BlackBerry
– Each provide their own MDM frameworks

• MDM solutions from third parties
– MobileIron
– AirWatch
– BlackBerry Enterprise

MDM Frameworks

• Policies and features that administrators
can control and enforce

• iOS, Android and BlackBerry
– Each provide their own MDM frameworks
– Third-party vendors develop products that

use the frameworks

Top Five MDM Solutions (2015)

1. MobileIron
2. AirWatch
3. Citrix (XenMobile)
4. IBM (MaaS360)
5. Good Technology
– Provides MDM without leveraging platform

framework and support

• Link Ch 7a

Project: MaaS360 from IBM

Project: MaaS360 from IBM

Project: MaaS360 from IBM

Project: MaaS360 from IBM

Project : MaaS360 from IBM

Categories of MDM
Frameworks

Device-Centric Model

• Leverages platform capabilities and
feature sets

• To configure, secure, and harden the
mobile device

• Uses underlying framework to detect
changes in device security and
configuration

• Includes: MobileIron, AirWatch, and Tangoe

Data-Centric Model

• Focuses on securing data/content of
interest
– Not on controlling or securing the whole

device

• Ensures security and integrity of data
–Without relying on platform capabilities

• Relies on a custom mobile app
• Example: Good for Enterprise

Hybrid Model

• Combines platform MDM framework with
solution-specific features

• Protects data and provides device
management

Common Features

Device Provisioning

• Deploy and enforce policies and
restrictions on mobile devices

• Provide access to resources controlled by
the MDM server

• Often use MDM client apps

Device Provisioning

Provisioning Profile

• Installed on the device by the MDM client
• An XML or text file
• Specifies configuration and provisioning

information for the mobile device
• May be
– Plan-text
– Signed
– Encrypted & signed

Policy Enforcement

1. Device receives a provisioning profile; it's
verified and decrypted, then parsed

2. Mobile platform populates system files
with the configuration information
required to enforce policies from the
provisioning profile

3. System files are parsed by system
services and implement the configuration
settings

iOS

• MDM server sends provisioning profiles
through Apple's Mail client (ActiveSync) or
the MDM app installed on the device

• Mobile device stores the profiles at
– /private/var/mobile/Library/
ConfigurationProfiles

• Stored as XML files (plists) with .stub file
extensions

Example Provisioning Profile

• Plist files with .stub extensions

Sample of iOS Provisioning Profile

Sample of iOS Provisioning Profile

Provisioning Process

• Verify and store provisioning profile
in .stub files

• Profile installation
– Parsing the profile
– Updating appropriate system files to enforce

policies

System Files Populated in iOS

• EffectiveUserSettings.plist and
• Truth.plist
– System files that determine an iOS device's security

posture
– Truth.plist contains PIN/passcode policies, device

restrictions, device timeout, etc.

Truth.plist

Truth.plist

Provisioning Status

• Once the system files repopulated
• Profile is considered installed
• Status updated to the MDM server
• Server grants access to protected

resources

Android

• MDM for Android works the same way
• Files are different in details

Bypassing MDM

Modifying MDM Policy Files

• On a jailbroken or rooted device
• Any user with sudo or root permission can

modify system files
• Can modify Truth.Plist
– To change passcode restrictions

• Mitigation
– Proprietary jailbreak detection capabilities

Enabling Simple Numerical Passcode

• Set allowSimple to true
• Set requireAlphaNumeric to false

Enabling No Passcode

• Set forcePIN to false

Increase Number of Failed PIN Attempts

• Set maxFailedAttempts to a higher
value

Set Inactivity and Lock Grace Period

• If a device locks due to inactivity, it can be
unlocked without a passcode if it's within the
grace period

Detecting MDM Bypass

• End-user can modify the provisioning
profiles and system files

• Administrators need to detect those
changes

• MDM client apps poll mobile devices to
monitor their security posture (Check-In)

• If a device is out of compliance, MDM
server can
– Remote wipe, remote lock, remote locate, etc.

Weak MDM Bypass Detection

• Some leading MDM solutions only
monitored provisioning files

• Changes made to system files were
undetected by the back-end servers
– Even though the devices were sending data

indicating noncompliance

• This was patched

MDM Server-Client Interaction

App Patching and Modification Attacks

• APK file can be decompiled to Smali code
and modified

• Android accepts self-signed certificates
• Attacker can execute the PackageManager

command at a Linux shell to install or
uninstall packages silently

Smali Code for Authentication

iOS Modification  
(on Jailbroken Devices)

• Code can be injected into running
processes with MobileSubstrate

• Allows runtime patching of system
functions

• Captain Hook and Logo are widely used
frameworks that use MobileSubstrate

XCon

• Prevents MDMs from detecting jailbroken
devices

• Patched these functions to fool GOOD

Decompiling and Debugging
Apps

Android Reverse Engineering

• APK files can be converted to Smali or
even Java code with
– apktool
– dex2jar
– JAD

Android Code Obfuscation

• ProGuard changes some filenames to
provide weak protection

• DashO is much more powerful
• All obfuscation is of limited utility
• A determined attacker can still modify

code

iOS Reverse Engineering

• Apps written in Objective-C
• Compiled into low-level machine language
• Reverse-engineering tools:
– Class-dump
– Class-dump-x
– Class-dump-z

• Scan binary iOS apps to extract interface
names

iOS Class Dump from an MDM App

iOS Anti-Decompilation Tips

• Move critical logic to low-level Simula-style
programming languages such as C++ that
don't use message passing

• Ensure more generic naming conventions for
publicly exposed interfaces and declarations

• Strip symbols when deploying in XCode
• Use dynamic UI components for handling

sensitive data and user input, not global
variables (to avoid swizzling attacks)

Swizzling Attacks

• A way to log all uses of a class
• Works on global objects
– Link Ch 7c

iOS Anti-Decompilation Tips

• Put all sensitive app logic in private
methods, protocols, or anonymous
methods
– To avoid swizzling attacks

• Anti-tamper techniques and solutions that
inject guards and protections in the app
– Such as EnsureIT by Arxan

Detecting Jailbreaks

Jailbreak Detection

• iOS 4.2 can detect jailbreaks in the OS
itself

• Other mobile platforms don't
• MDM solutions use local apps to detect

jailbreaks
– Methods and effectiveness varies widely
– May just detect presence of Cydia

Jailbreak Detection Bypass

• Look for Cydia
– Try writing files with fopen() to look for

specific files, and/or look for su

• Bypass:
1. Scan app binaries for interface names such

as isDeviceJailBroken and
checkDeviceSecurity

2. Dynamically patch those methods with
MobileSubstrate

Jailbreak Detection Bypass

• Don't install Cydia
• MDMs responded by detecting
– su, apt-get, or file-write permissions

• Those detections still use method calls
and platform features that can be
circumvented by skilled attackers

Jailbreak Detection Bypass
Countermeasures

• Perform multiple checks at different
locations in the app code

• Move jailbreak detection logic to C++
• Perform compensatory controls and

actions on the server rather than on-
device logic

• Implement anti-debugging and/or code
obfuscation tools/techniques like Arxan

Remote Wipe and Lock

Mobile Wipe and Lock

• Two of the most widely used features in
MDM solutions

• Response to a security incident
– Device lost
– Device breached
– Device out of compliance with security policy

Ways to Prevent Remote Wipe and Lock

• Put device in Airplane Mode
• Patch MDM app so it won't perform remote

wipe or lock
– And send false responses back to the server

• Most MDM solutions are susceptible to
patching
– But modern MDMs can use client-side logic to

wipe or lock devices without communicating with
the server

