Ch 7: Mobile Device
Management

Momaty o e kI v E reeing TR rabkd rxpaz arie vrora A

Ih e snndrdbhoom s .
=T’ 1 Pzaars, Noe Peocet Se0u Ao 1% Jr ety Corwxes Sk
- ﬂ

-_ - Hacking Mobile
[m'“hfn Devices

geeurity secrets & Salutions A
NCil Bagmat MEe Srickd Joson Fouze oo Scombay

Updated 4-4-17

What is MDM?

 Frameworks that control, monitor, and
manage mobile devices

* Deployed across enterprises or service
providers

* Provide these functions remotely:
— Monitoring
— Control
— Manage

MDM Frameworks

* Policies and features that administrators
can control and enforce

* i10S, Android and BlackBerry
— Each provide their own MDM frameworks

* MDM solutions from third parties
— Mobilelron
— AirWatch
— BlackBerry Enterprise

MDM Frameworks

* Policies and features that administrators
can control and enforce

* i0S, Android and BlackBerry

— Each provide their own MDM frameworks

— Third-party vendors develop products that
use the frameworks

Top Five MDM Solutions (2015)

1. Mobilelron

2. AirWatch

3. Citrix (XenMobile)
4. IBM (Maa5360)

5. Good Technology

— Provides MDM without leveraging platform
framework and support

 Link Ch 7a

Project: MaaS360 from IBM

€« - C f L htps://m3.maas360.com/emc/?

‘,o...

Maa$S36

Quick Start

Add a Device

A message will be sent to the user with a one-time passcode to add a device.

Username - samccsf9 * &
Email Address - | samcesf9@mailinator.com | &
Domain - | mailinator | &
Phone Number United States of America (1) | |4155551212 | &

Send Request

Project: MaaS360 from IBM

enn Gemymotion for personal use - Coogle Galavy Nexus - 4.3 - AR |

Device Enroliment Request

Your IT administrator has requested you to
enroll your device with MaaS360. This will
enable you to access the corporate resources
from your device. MaaS360 will also allow your
administrator to manage your device, send
updates, and assist you in troubleshooting
device issues.

To enroll your device, open the following URL in
your device browser and enter the enrollment
passcode mentioned below

Note: If you are enrolling an i0S device, use the
Safari browser to open the URL.

Device Enroliment URL: hiip//m.dmy/
30021817/2532727

Username: samccsf9

Passcode: myc37)f

If prompted for your corporate identifier and
email address, use the following:

Corporate Identifier: 30021817
Domain: mailinator
ne AdAdress: a1

MaaS360 MDM for Android

Mazaas3h

X

Users also installed

MaaS360 MaaS360 IBM Mobile
MDM for Browser Cliem

LA A

LA A A

LA A

Project: MaaS360 from IBM

g C N D https://m3.maas360.com/emc o [=
Rkl
) . . - .
MaaS360 # DEvICES USERS APPS DOCS REPORTS SETUP ¥ ? O
by Paerten R i el
v Alpha Passcode # Cancel Save e And Py .." More »
Last Publahed: [VersiomN A)
— Configwre Passcode Palicy p— "
[r— Device Settings v —— ARG 4.4

3 Passcode Passcode Settings
Passcode Quality FYPT N CNPUPS : ANGrols 1.2+

t")} Seturty
Minimum Passcode Length (4-106 characters) u AN rois .

o Restrictions

- Maximum Passcede Age (In Days) Ancrokd 1.0«
Allowed [dle Time (in minules) Before Auto-Lech 30 rrisutes s Androkd 2.3+

o Ap ation Comalance

¥]

Passcode Nitery Androkd 3.0+

=, 'tive App Compliance Number of Fallod Passcode Attompts Before AN Data ls | Android 2.2
Srased (4-16) s

Project: MaaS360 from IBM

ann
!

Cermymaton for personal wse - Coogle Calaxy Newws - 4.1 - AR)

App info

o ' MaaS360
.

v Show notifications

STORAGE

Total 43.97MB
App 36.60MB
Data 7.37TMB

CACHE

Cache 152KB

%2 Change Device Passcode

- - Clear cache
! Passcode Quality Alpha-numeric Length: 8

LAUNCH BY DEFAULY

Project : MaaS360 from IBM

€« C A D hups://m3.maas360.com/emc/# 2 [=
g, 1 o ST
MaaS360 & DEVICES USERS SECURITY APPS pocs REPORTS SETUP G 7?7 sam O
By I.eina
¢ |J samccsf3-Google Galaxy Nexus - 4.3 - API 18 - 720x1280 Al R tocks | GaMessge | & Buz (200
ot Hardware Invento =
_— n W P
3y . Reset Passcode
Username samocsf3 Operating System Android 4.3 (I ' Selective Wipe
Manufacturer Genymotion Model Google Galaxy # ¢ Wipe
IMEI/MEID 000000000000000 Device ID androidc259148 ¥ Change Policy
> " l
Ownership Not Defired # W Change Rule St
£« Distribute App
~-| WorkPlace & Security =~ Distribute Doc
Managed Status Enrolled O Applied Policy MDM: Alpha pad &l Remove Control
& Hide
Last Reported 03/18/2015 16:04 EDTO Jailbroken/Rooted Yes ©
L Request Data Refresh
Failod Settings No D Solective Wipe Status Not Appled O
Encryption Level No Encryption @ Passcode Status MOM: Not Complant @
WoekPlace: Not Enabied @
Policy Compliance State Out of Compliance @ Rules Compliance Status
Rule Set Name -
) Account ID 021828 PRIVACY AND LEGAL

Categories of MDM
Frameworks

Device-Centric Model

Leverages platform capabilities and
feature sets

To configure, secure, and harden the
mobile device

Uses underlying framework to detect
changes in device security and
configuration

Includes: Mobilelron, AirWatch, and Tangoe

Data-Centric Model

Focuses on securing data/content of
interest

— Not on controlling or securing the whole
device

Ensures security and integrity of data
— Without relying on platform capabilities

Relies on a custom mobile app
Example: Good for Enterprise

Hybrid Model

 Combines platform MDM framework with
solution-specific features

* Protects data and provides device
management

Common Features

Device Provisioning

* Deploy and enforce policies and
restrictions on mobile devices

* Provide access to resources controlled by
the MDM server

« Often use MDM client apps

Device Provisioning

MDM app

File system l

Provisioning |||

profiles

2

System files

<

S s
-
\\ ‘
.

PUSH notification
services

7~

Enterprise infrastructure

L-*

MDM Authentication
server (LDAP/AD)

~

>

Provisioning Profile

Installed on the device by the MDM client
An XML or text file

Specifies configuration and provisioning
information for the mobile device

May be

— Plan-text

— Sighed

— Encrypted & signed

1.

2.

Policy Enforcement

Device receives a provisioning profile; it's
verified and decrypted, then parsed

Mobile platform populates system files
with the configuration information
required to enforce policies from the
provisioning profile

. System files are parsed by system

services and implement the configuration
settings

105

 MDM server sends provisioning profiles
through Apple’'s Mail client (ActiveSync) or
the MDM app installed on the device

* Mobile device stores the profiles at

— /private/var/mobile/Library/
ConfigurationProfiles

» Stored as XML files (plists) with .stub file
extensions

Example Provisioning Profile

e Plist files with .stub extensions

Sample of i0S Provisioning Profile

Sample of i0S Provisioning Profile

Provisioning Process

 Verify and store provisioning profile
in .stub files

* Profile installation

— Parsing the profile

— Updating appropriate system files to enforce
policies

System Files Populated in i0S

» EffectiveUserSettings.plist and

* Truth.plist

— System files that determine an i0S device's security
posture

— Truth.plist contains PIN/passcode policies, device
restrictions, device timeout, etc.

Truth.plist

{?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
'http://www.apple.com/DTDs/PropertyList-1.0.dtd">
{plist version="1.0">
dict>

<key>assignedObject</key>

<dict/>

<key>forcePIN</key>

<dict>
<key>preference</key>
<true/>
<key>value</key>
<false/>

</dict>
<key>requireAlphanumeric</key>

<dict>
<key>preference</key>
<false/>

</dict>

Truth.plist

<key>restrictedValue</key>

<dict>

<key>maxFailedAttempts</key>

<dict>

</dict>

<key>preferSmallerValues</key>
<true/>

<key>value</key>
<integer>ll</integer>

<key>maxGracePeriod</key>

<dict>

</dict>

<key>preferSmallerValues</key>
<true/>

<key>value</key>
<integer>3000</integer>

<key>maxInactivity</key>

<dict>

</dict>

<key>preferSmallerValues</key>
<true/>

<key>value</key>
<integer>3000</integer>

Provisioning Status

Once the system files repopulated
Profile is considered installed
Status updated to the MDM server

Server grants access to protected
resources

Android

 MDM for Android works the same way
* Files are different in details

Bypassing MDM

Modifying MDM Policy Files

On a jailbroken or rooted device

Any user with sudo or root permission can
modify system files

Can modify Truth.Plist
— To change passcode restrictions

Mitigation
— Proprietary jailbreak detection capabilities

Enabling Simple Numerical Passcode

 Set allowSimple tOo true
« Set requireAlphaNumeric to false

<key>allowSimple</key>
<dict>
<key>preference</key>
<true/>

y .
c/dict>
~ /N] N e -~

<key>requilireAlphanumeric</key>
<dict>
<key>preference</key>
P = — /~
~Ld 1 se/ .’

y .
~ /—j ~ NN
~/ K] “ L~

Enabling No Passcode

e Set forcePIN to false

<key>forcePIN</key>
<dict>

<key>value</key>
<false/>
</dict>

Increase Number of Failed PIN Attempts

* Set maxFailedAttempts to a higher
value

1 - . - ¢
- 3 -~ - 1 L ~ ~J TN o - - - ~
< - ..,.__,m._vl‘ -]‘ t L"N"L"‘"" /k,w.;_
~ A ‘._’_. s 11 cl A C_] LilcocUlAaAlL Ll oSN/ = _'z" -~

» >
- Al L ~"‘

<kev>preferSmallerValues</kevy>

—_ —_

<Crue/>
<key>value</key>

' . - ' . n
TN t ST ~> | < /1Nt erary >
Al LN \1 e A A A ~ .nf N Wy I S S - L S A

-« / ,—i 1~ ~
~/QLCL-A

Set Inactivity and Lock Grace Period

 |f a device locks due to inactivity, it can be
unlocked without a passcode if it's within the
grace period

<key>maxGracePeriod</key>

<key>preferSmallerValues</key>

integer>3000</integer>

<integer>3000</integer>

Detecting MDM Bypass

End-user can modify the provisioning
profiles and system files

Administrators need to detect those
changes

MDM client apps poll mobile devices to
monitor their security posture (Check-In)

If a device is out of compliance, MDM
server can

— Remote wipe, remote lock, remote locate, etc.

Weak MDM Bypass Detection

* Some leading MDM solutions only
monitored provisioning files

* Changes made to system files were
undetected by the back-end servers

— Even though the devices were sending data
indicating noncompliance

* This was patched

MDM Server-Client Interaction

MDM server MDM client/Mobile device
1) Server HELLO (via PUSH/C2DM) .
< 2) Client HELLO (HTTP)
3) Server COMMAND (HTTP) .
4) Execute
p 5) Client response (Command result - HTTP) command

6) Server OK/Correction command (HTTP)

»

Optional:
Corrective
action

7) Client OK/ACK (HTTP)

App Patching and Modification Attacks

* APK file can be decompiled to Smali code
and modified

» Android accepts self-signed certificates

» Attacker can execute the PackageManager
command at a Linux shell to install or
uninstall packages silently

Smali Code for Authentication

.locals 1

Jprologue
.line 80

return-object v@
.end method

.........................

.locals 7
parameter "account"
parameter

value = {
n(n,

¥

Lnd annotation

i0OS Modification
(on Jailbroken Devices)

* Code can be injected into running
processes with MobileSubstrate

* Allows runtime patching of system
functions

« Captain Hook and Logo are widely used
frameworks that use MobileSubstrate

XCon

* Prevents MDMs from detecting jailbroken
devices

 Patched these functions to fool GOOD

GmmDefaults: ObjectForKey:0OptionJailbreakEnhancementServices
GmmDefaults: objectForKey:0ptionJailbreakEnhancementFork

GmmDefaults: objectForKey:0OptionJailbreakEnhancementKernelState
GmmDefaults: objectForKey:0ptionJailbreakEnhancementDevReadPermissior:
GmmDefaults: objectForKey:0OptionJalilbreakEnhancementURL

Decompiling and Debugging
Apps

Android Reverse Engineering

* APK files can be converted to Smali or
even Java code with
— apktool
— dex2jar
—JAD

Android Code Obfuscation

ProGuard changes some filenames to
provide weak protection

DashO is much more powerful
All obfuscation is of limited utility

A determined attacker can still modify
code

10S Reverse Engineering

Apps written in Objective-C
Compiled into low-level machine language

Reverse-engineering tools:
— Class-dump
— Class-dump-x
— Class-dump-z

Scan binary i0S apps to extract interface
names

i0S Class Dump from an MDM App

- (void)onProvisioned;

- (void)processUserStatusChanged;

- (void)complete¥ipeDevice;

- (void)wipeDeviceFileSystem;

- (BOOL wipeNextGPAppInList;

- (BOOL)isRemotelocked;

- (void)setIsRemotelocked: (BOOL Jargl ;
- (BOOL)disabledDueToDeviceWipe;

- (void)otaPol icyUpdateCheck

...............................

- (void)startHighSyncRateCheckTimer ;

- (void)stopHighSyncRateCheckTimer;

- (void)checkForHighSyncRate;

- (void)invokePerformInitialContoctSync:(id)argl;

- (void)startContactSyncThreadiaitForIntted:(BOOL yargl;

- (void)terminateContactSyncThread¥aitUnt i lDone : (BOOL Jargl ;
- (void)performinitialContactSync;

- (void)syncComplete;

- (void)gracefulShutdown;

- (void)deal loc;

- (void)savelnt:(int)argl inPrefsW¥WithKey:(id)arg2;

- (void)mobi leConf igSnoozeTimerFired:(id)argl;

- (void)actionSheet :(id)argl clickedButtonAtIndex:(int)arg2;
- (void)alertView:(id)argl clickedButtonAtiIndex:(int)arg2;
- (void)start2¥ayContactSync: (BOOL)argl ;

- (void)enab leSyncWithAddressBook : (BOOL)argl ;

10S Anti-Decompilation Tips

Move critical logic to low-level Simula-style
programming languages such as C++ that
don't use message passing

Ensure more generic naming conventions for
publicly exposed interfaces and declarations

Strip symbols when deploying in XCode

Use dynamic Ul components for handling
sensitive data and user input, not global
variables (to avoid swizzling attacks)

Swizzling Attacks

* A way to log all uses of a class

» Works on global objects
— Link Ch 7c

10S Anti-Decompilation Tips

» Put all sensitive app logic in private
methods, protocols, or anonymous
methods

— To avoid swizzling attacks

* Anti-tamper techniques and solutions that
inject guards and protections in the app

— Such as EnsurelT by Arxan

EnsurelT® Family of ™

Products

Intelligent Software Protection for
mobile and embedded apps

EnsurelT Secures Mobile & Embedded Apps
EnsurelT is a proven software protection solution for hardening mobile and embedded code from attacks. It defends app integrity
from the tampering and reverse engineering of code to steal intellectual property, violate DRM robustness, and pirate the software.

Detecting Jailbreaks

Jailbreak Detection

* i0S 4.2 can detect jailbreaks in the OS
itself

» Other mobile platforms don't

* MDM solutions use local apps to detect
jailbreaks
— Methods and effectiveness varies widely
— May just detect presence of Cydia

Jailbreak Detection Bypass

* Look for Cydia

— Try writing files with fopen() to look for
specific files, and/or look for su

* Bypass:

1. Scan app binaries for interface names such
as isDevicelJailBroken and
checkDeviceSecurity

2. Dynamically patch those methods with
MobileSubstrate

Jailbreak Detection Bypass

* Don't install Cydia
 MDMs responded by detecting
— su, apt-get, or file-write permissions

* Those detections still use method calls
and platform features that can be
circumvented by skilled attackers

Jailbreak Detection Bypass
Countermeasures

Perform multiple checks at different
locations in the app code

Move jailbreak detection logic to C++

Perform compensatory controls and
actions on the server rather than on-
device logic

Implement anti-debugging and/or code
obfuscation tools/techniques like Arxan

Remote Wipe and Lock

Mobile Wipe and Lock

* Two of the most widely used features in
MDM solutions

* Response to a security incident

— Device lost
— Device breached
— Device out of compliance with security policy

Ways to Prevent Remote Wipe and Lock

* Put device in Airplane Mode

* Patch MDM app so it won't perform remote
wipe or lock
— And send false responses back to the server

* Most MDM solutions are susceptible to
patching

— But modern MDMs can use client-side logic to
wipe or lock devices without communicating with

the server

