Ch 6: Mobile Services and
Mobile Web (Part 2)

N"Nﬁ CNIT 128:
Hacking Mobile
EAPSEL

Devices
EE:UI‘IU SIBI’BIS ﬁ SUIUIIUHS@

Updated 3-13-17




SAML
Security Assertion Markup Language



What SAML Does

« XML-based framework

* Exchanges authentication and
authorization data between
— An identity provider (IdP) and
— A service provider (SP)

» Used by many organizations and mobile
web apps for single sign-on (SSO)



Three Use Cases for SAML

* Single sign-on
— User logs into one system

— Other systems share the authentication/
authorization information

— No need to log in again

* Federated identity

— Multiple systems agree to use the same name
identifier for a user

* Web service security

— SAML can be used to protect SOAP-based Web
services



SAML SP-Initiated Web Browser SSO

Service
provider

1) Access protected resource

2) AuthnRequest redirect

6) POST signed response

7) Provide protected resource

Identity

provider
2) AuthnRequest GET request

3) Authentication challenge

4) User logs in

5) Generate signed response in HTML form




Details of SSO

« 2.1is a HTTP redirect (302 or 303) that
redirects to the IdP

» 5. After successful authentication, the IdP
builds a SAML assertion

— Describing who the user is and relevant
authorization information

— Sighed via XML Signature specification



General SAML Threats

e Collusion

— Two or more systems (such as SPs) may
collude against users or the IdP
* Denial of Service

— XML-based attacks could bring down the
servers



General SAML Threats

* Man-in-the-middle
— Attacker could intercept SAML assertions,

user credentials, or session identifiers and
hijack accounts

— Mitigation: use TLS or IPsec, or
— Message-level encryption and integrity



General SAML Threats

* Replay attacks

— Hostile SP could replay a received SAML assertion
from a user/IdP to a second SP

— If the second SP accepts the assertion, the hostile
SP can impersonate the victim

 Session hijacking
— Attacker acquires or predicts the session identifier
— May steal session identifier with MITM or XSS

— Session fixation vulnerability may allow an
attacker to fixate the session identifier to a fixed
value



Modified SAML Assertion

Attacker changes a SAML assertion passed
to a SP

Normally, SP can detect this by verifying
the XML signature

SP may have implementation bugs that
weaken signature validation and processing

Such as XML Signature Wrapping (XSW)
vulnerabilities



XML Sighature Wrapping (XSW) Attacks

» Attacker modifies SAML assertion, such as

— Modifying Subject portion to be an
administrator

* In 2012, most popular SAML frameworks
had this vulnerability (11 out of 14)



Structure of a Normal SAML Response

Assertion
(Signed/ ID="#SOME_ID"
Processed)

L Signature
L Signedinfo
l— Reference URI="#SOME_ID"




XML Signature Processing

 Sighature validation module
— Is the assertion properly signed?
— Test requires the IdP's public key

* Business logic processing module
— Extracts the assertion

— Provides the app with identification
information contained within the signed
assertion



Signature Exclusion Attack

* Remove signature element

 Easiest attack

* Apache Axis 2 and OpenAthens were

vulnerable
— Missing signature was interpreted as a valid
signature



Adding Assertions

» Attacker adds more assertions
— They are not sighed at all

* Vulnerable frameworks will report them as
sighed because the original assertion’s
sighature was valid

* Vulnerable systems
— Higgins
— Apache Axis2
— IBM XS 40 Security Gateway



Response

Assertion
(Attacker controlied) ID="EVIL_ID*

(Processed)

Assertion

(Signed/ ID="#SOME_ID"
Processed)

Signature
Signedinfo
Reference URI="#SOME_ID"




Safest Systems

 In the 2012 study, only two systems were
not vulnerable
— Microsoft's Windows ldentity Foundation
— SimpleSAMLphp
* SimpleSAMLphp
— Extracts each assertion into a separate DOM
tree
— Verifies signature for every assertion



XML Signature Wrapping
Countermeasures

» Use the latest version of your framework
* These vulnerabilities were patched



Mobile Web Browser and
WebView Security



Cross-Platform Development
Frameworks

« Each device has its own mobile web browser
— Android and i0S both use the WebView component
* Organizations often wish to support many
platforms
—1i0S, Android, Blackberry, Windows Mobile
* Developers seek cross-platform development

frameworks, such as HTML 5 and JavaScript
bridges (see Ch. 8)



URI Schemes

 Web pages use http: or https:

« Other schemes are provided by the OS,
such as tel:
— Launches a dialer for a telephone call

— From within a web page in the mobile web
browser

— Both 10S and Android require a click from the
user before actually making a call



tel: on i0S

<html><body>

<iframe
src="tel:5555555555">
</iframe> F ki
</body></html> (555) 555-5555

Cancel ‘ Call




tel: on Andro1d

Recent calls

<htm1 ><b°dy> ! (Unknown) 03/14 3:40 PM _+_
<iframe ' oo T

1 (Unknown)

S]’.‘C="tel:5555555555n> n—
</iframe> . 1 (Unknown)

</body></html> 55552555552 e

s
4 5 6
-

8.




Exploiting Custom URI Schemes

 iOS and Android allow apps to define
custom URI schemes
— Can be triggered within mobile browser

— Or within another app, such as an email
client

— As an |IPC (Inter-Process Communication)
mechanism

 Over 600 custom URI schemes are known



Exploiting Custom URI Schemes

» Malicious JavaScript or HTML code can
invoke native mobile functionality

— Exploits trust between the browser and the
target mobile app

* Similar to Cross-Site Request Forgery
(CSRF)

— Exploits trust between browser and the target
site



Exploiting Custom URI Schemes

» Attacker may send an email or SMS
— Containing a malicious URL

* May use this functionality when crafting
an XSS exploit



Abusing Custom URI Schemes via Skype

* In 2010, Skype supported a custom URI
scheme skype:

« But failed to prompt user before dialing a
phone number, so this web page placed a
call immediately

<html><body>
<iframe src="skype:15555555555?call">

</iframe></body></html>



Abusing USSD (Unstructured
Supplementary Service Data) Codes

 USSD codes are used to communicate with
manufacturers and Mobile Network

Operators (MNOs)

* T-Mobile uses these USSD codes:
— #686# returns your phone number
— #225# returns your account balance

— #793# resets your voicemail password to the
last four digits of your phone number




Testing for USSD Vulnerability

* Type this into your
mobile browser

tel:*%2309%23

— %23 is URL-encoding for
#

 See if it dials without
user interaction

* It will display your IMEI
#




Exploits Abusing USSD Codes

 Factory reset on some Samsung devices
<html><body>

<iframe
src="tel:*2767*3855%23">
</iframe>

</body></html>



Custom URI Schemes in Android

Intents are the primary IPC (Inter-Process
Communication) method

Apps can declare custom URI schemes in
the AndroidManifest.xml file

The new activity is available to other apps
on the system, not just the browser
— Unless android:exported is set to false

New activity could send an SMS, for
example




Defines a someapp: Scheme

<activity

android:name=".MainActivity"

android:label="@string/title activity main">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category andriod:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category andriod:name="android.intent.category.DEFAULT" />
<category andriod:name="android.intent.category.BROWSABLE" />
<data andriod:scheme="someapp" />

</intent-filter>

</activity>



Malicious Webpage to Send an SMS

<html><body>
<iframe

src="someapp://junk/junk?
mdn=5555555555&msg=Hello%20World!" width="1"
height="1">

</iframe>

</body></html>



Android Custom URI Scheme
Countermeasures

Similar to preventing intent-based attacks

Restrict access to the component via the
android:exported attribute in the
AndroidManifest.xml file

Perform input validation on all data received
from intents

Use signature-level permissions if you need to
allow an IPC mechanism between two trusted

apps



Custom URI Schemes on i0S

* Custom URI schemes are the primary means
of IPC on i0S

* To see custom URI schemes, look at Info.plist
CFBundleURLTypes = (

{
CFBundleURLSchemes = (

someapp

) 7

) ;



Effects of the Custom Scheme

* If an app defines a handleOpenURL method
that creates a new file

» Attacker can trick a user into visiting a
hostile Web page and create a new file

<html><body>

<iframe

src="someapp://junk/junk?path=/tmp/
lulz&contents=pwned" width="1" height="1">

</iframe>
</body></html>



10S Custom URI Scheme
Countermeasures

* Input validation on the provided URL

* Move away from deprecated
handleOpenURL method

— Use openURL method instead, which has two
additional arguments that could be validated

— sourceApplication (bundle identifier of the
requesting app)

— annotation (a propertylist object defined by
the requesting app_



Exploiting JavaScript Bridges



WebView

* Both Android and iOS apps often use
WebView

To display mobile web content within an app
* This code displays Google on Android

WebView webView = new WebView(R.id.webViewl);
webView.getSettings().setJavaScriptEnabled(true);
webView.loadUrl("http://www.google.com");



JavaScript Bridges

» Both i0S and Android allow developers

* To adjust WebView's settings and expose
native mobile functionality to JavaScript
executing within WebView

* These bridges can be exploited with
— XSS, URL redirection, MiTM, or IPC



Android addJavaScriptinterface
WebView Injection

* The addJavaScriptInterface function

— Injects Java objects into WebView
— Allows JavaScript to call the public methods of
the injected Java object

* Could allow JavaScript to invoke native
phone functionality
— Sending SMS messages
— Accessing account information
— Etc.



Same Origin Policy

* Browsers restrict content by the domain
name

— A yahoo.com cookie can't be read by
microsoft.com

« JavaScript can be used to subvert the
same origin policy



FileUtils Object

 If an app injects a FileUtils object into
JavaScript

* That allows JavaScript to write to the file
system

* 30% of Android apps use
addJavaScriptInterface

— Android documentation warns against using
this feature



Severity of the Risk

Prior to Android 4.2, no
addJavaScriptInterface is safe

Attacker can write an arbitrary ARM
executable to the target app's data
directory and execute it

— A "reflection” attack
Could root the device

Therefore, could break out of sandbox and
do anything



Reflection

A form of self-modifying code
A class or object can examine itself
And alter itself at runtime

Powerful but dangerous
— Link Ch 6j



Android WebView Injection
Countermeasures

* Android 4.2 and later require
programmers to annotate exposed
functions, lowering this risk

— This was about half of Android devices in 2014

* Only use addJavaScriptInterface to
load trusted content, not anything

acquired over the network or via an IPC
mechanism



Android WebView Injection
Countermeasures

* Use the shouldOverrideUrllLoading
function to limit bridging

 Avoid bridging JavaScript and Java
altogether



Android WebView JavaScript Bridge Exploitation
via shouldInterceptRequest

An app can override the WebViewClient's
shouldInterceptRequest function

If the URI scheme matches the target,

App can use reflection to acquire an
instance of an object

Invoke a function using parameters from
the query string



Exploit Code

* Writes to the SD card

<html><body><iframe src="someapp://junk/
junk?
c=java.lang.Runtime&ml=getRuntime&m2=execé&
a=touch%$20%2fmnt%2fsdcard%2fhello”
width="1" height="1">

</iframe></body></html>



Android WebView JavaScript Bridge
Exploitation Countermeasures

* An app that uses a custom URI scheme
should be careful about what functionality
is exposed

» Use input validation and output encoding
to prevent injection attacks

« Exposing the ability to use reflection to
untrusted content is very dangerous



i0S UIWebView JavaScript
Bridge Exploitation

* iOS doesn't support explicit JavaScript
bridges like Android

« But an 10S app can intercept URL requests
by defining a
shouldStartLoadWithRequest
method

* Can use reflection to acquire an instance
of a class



Reflection Attack

* An app can use data from the URL, such
as JSON payload, in the reflection

* Allows the attacker to execute commands
injected into the JSON payload



Exploit Code

 Adds records into a SQLite database

<html><body><iframe src="someapp://junk/
junk? ("cn" : "cigObAccess",

"mn": "executeQuery:", "args":["INSERT INTO
someTable(coll,col2) VALUES(\"Wee an
insert\",667);"1}' />

</iframe></body></html>



i0S UlIWebView JavaScript Bridge
Countermeasures

 Input validation and output encoding of
user input

* Be wary of code that performs reflection
using tainted input



Mozilla Rhino JavaScript Bridges

* Developers want to use the same codebase for
i0S, Android, and BlackBerry

* One way to do that is to use JavaScript

* One way to use JavaScript is with the Mozilla
Rhino JavaScript engine

— Licensed to Sun

— Has LiveConnect which allows JavaScript to
interact with Java objects directly

— Convenient but insecure; can run code based on
user inputs



Mozilla Rhino JavaScript Bridges
Countermeasures

* Developers who use Rhino must sandbox
their code

* It's possible to whitelist based on full class
names, and to limit accessible fields

» But developers have to include custom
code to do it



