Ch 6: Mobile Services and
Mobile Web
Part 1

N"Nﬁ CNIT 128:
Hacking Mobile
EAPSEL

Devices
EE:UI‘IU SIBI’BIS ﬁ SUIUIIUHS@

Updated 2-22-17

Ch 6 Part 1
Through OAuth
Part 2 starts with SAML

Server-Side Technologies

* SQL (Structured Query Language)
— Servers that manage databases

— Contain SSNs, credit card numbers,
sometimes passwords, etc.

SELECT * FROM sqlol.users Get all fields from the table "sql.users"

SELECT * FROM sqlol.ssn Get all fields from the table "sql.ssn"

SELECT name FROM sqlol.ssn Get field "name" from the table "sql.ssn"

Server-Side Technologies

* SOAP (Simple Object Access Protocol)

— XML-based middleware to exchange data
between servers and clients

— Can operate over any transport protocol such
as HTTP, SMTP, TCP, UDP, or JMS (link Ch 6a)

— Examples on next slides from link Ch 6l

Here is the SOAP request —

POST /Quotation HTTP/1.0

Host: www.Xyz.org

Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?7xml version="1.0"7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.0rg/2001/12/soap-envelope" !

<SOAP-ENV:Body xmlns:m="http://www.Xxyz.org/quotations" >
<m:GetQuotation>
<m:QuotationsName>MiscroSoft</m:QuotationsName>
</m:GetQuotation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A corresponding SOAP response looks like —

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.0rg/2001/12/soap-envelope" !

<SOAP-ENV:Body xmlns:m="http://www.Xxyz.org/quotation" >
<m:GetQuotationResponse>

<m:Quotation>Here is the quotation</m:Quotation>
</m:GetQuotationResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

JSON v. XML

* From link Ch 6n

JSON XML

<beer>
name: 'Asahi Draft Beer', <name>Asahi Draft Beer</name>
brewer: { <brewer>
name: 'Asahi’, <name>Asahi</name>
country: ‘Japan’ <country>Japan</country>
} </brewer>
calories: 41, <calories>4l</calories>
alcohol: '5.21"° <alcohol>5.21</alcohol>
</beer>

Server-Side Technologies

* ReST (Representational State Transfer)

— Uses HTTP to transfer data between machines

— The World Wide Web can be viewed as a REST-
based architecture (link Ch 6c)

— Send data with PUT, get it with GET (link Ch én)

curl =X PUT \
-—anyauth --user username:password \
-d '{"name": "Iced Mocha", "size": "Grandé", "tasty": true }' \

"http://myhost:port/vl/documents?uri=/afternoon-drink.json’

curl =X GET \
——anyauth —--user username:password \
"http://myhost:port/vl/documents?uri=/afternoon-drink.json’

Server-Side Technologies

« JSON (JavaScript
Object Notation)
— Lightweight

data-interchange alue”: false
format

— An alternative to
XML (link Ch 6b)

— Example from S
link Ch 6m

100

Server-Side Vulnerabilities

» Expose far more data than client-side
vulnerabilities

» Larger attack surface than client

— Server runs services, some for clients, others
for business logic, internal interfaces,
databases, partner interfaces, etc.

General Web Service Security
Guidelines:
OWASP Top Ten Mobile Risks
2016
Link Ch 6k

M1 - Improper Platform

This category covers misuse of a R:_?tform feature or failure to use gatform
security controls. It might include Android intents, platform permissions, misuse
of TouchlID, the Keychain, or some other seourny control that is part of the
mobile operatmg s{stem There are several ways that mobile apps can
experience this ri

_\

M2 - Insecure Data)

This new catego g'ais a combination of M2 + M4 from Mobile Top Ten 2014. This
covers insecure data storage and unintended data leakage.

This covers poor handshaking, incorrect SSL versions, weak negotiation,
cleartext communication of sensitive assets, etc.

This categ or¥ captures notions of authenticating the end user or bad session
management. This can include:

« Failing to identify the user at all when that should be required
« Failure to maintain the user's identity when it is required
« Weaknesses in session management

J N/ /U

The code applles cq{rtog y to a sensitive information asset I-lowever the
crYpl icie some way. Note that anything

elat toTLSorSSL oesm M3. Also, if the ap pfmlstousecfyrl raphyatall
when it should, that robaglg belongs in M2. This cat ry is for issues where
cryptography was a but it wasn't done corr

AN

/

This is a category to capture any failures in authorization (e.g., authorization
decisions in the client side, forced browsing, etc.). It is distinct from authentication
issues (e.g., device enrolment, user identification, etc.).

If the app does not authenticate users at all in a situation where it should (e.g.,
granting anonymous access to some resource or service when authenticated and
authorized access is required), then that is an authentication failure not an
authorization failure.

~\

l/
M6 - Insecure a
Authorization J
|
.
p
M7 - Client Code Quality

(§ J,

This was the "Security Decisions Via Untrusted Inputs®, one of our lesser-used
categories. This would be the catch-all for code-level implementation problems in
the mobile client. That's distinct from server-side coding mistakes. This would
capture things like buffer overflows, format string vulnerabilities, and various other
code-level mistakes where the solution is to rewrite some code that's running on
the mobile device.

/
N\

\

M8 - Code Tampering

< Y/

I
.

This category covers binary patching, local resource modification, method
hooking, method swizzling, and dynamic memory modification.

Once the application is delivered to the mobile device, the code and data
resources are resident there. An attacker can either directly modify the code,
change the contents of memory d namicallr. change or replace the system APIs
that the application uses, or modify the ication’s data and resources. This can

rovide the attacker a direct method of subverting the intended use of the software
or personal or monetary gain.

\

(M9 - Reverse Engineering

)~
N

This category includes analysis of the final core binary to determine its source
code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper,
otool, and other binary inspection tools give the attacker insight into the inner
workings of the application. This may be used to exploit other nascent
vulnerabilities in the application, as well as revealing information about back end
servers, cryptographic constants and ciphers, and intellectual property.

/

M10 - Extraneous
Functionality

\ 1

Often, developers include hidden backdoor functionality or other internal
development security controls that are not intended to be released into a
production environment. For example, a developer may accidentally include a
Fassword as a comment in a hybrid app. Another example includes disabling of 2-
actor authentication during testing.

/
N\

/

Attacks Against XML-Based
Web Services

Security Audit of XML-Based Web
Service

* Identify web service endpoints
— By examining source code of client
— Or examining Web traffic while client runs

« Craft legitimate web service requests
— For all endpoints and operations

* Vulherability Discovery

— By altering structure of contents of XML
documents sent to the web service endpoints

Web Services Description Language

(WSDL)
d An XML-based WSDL 1.1 WSDL 2.0
R Ideﬂnltlons description
interface -
description language s v)
. A M | 85
— Used to dgscrlbe ——= e gg
functionality offered Vit e
. output output
by a Web service = — l
— |mage from binding binding s
Wikipedia (link Ch orvee | . ovics ||| £3

SoapUl

* SoapUl can build a set of base test cases given a
URL to an identified WDSL

— Link Ch 6¢g

C A) www.soapuiorg & @ |

\A‘v SoapUI

~ by SMARTBEAR Support Community Pro Store Downloads Open Source

Ready! API 1.2:
- Validate, Virtualize & Scale

DOWNLOAD FREE TRIAL

XML Injection Example

e Client sends

<?xml version="1.0"?2>

<ProductRequest>
<Id>584654</1d>

</ProductRequest>

» Sever replies, echoing Id from client

<?xml version="1.0"?>

<ProductResponse>
<Id>584654</1d>
<Price>199.99</Price>

</ProductResponse>

XML Injection Example

* Client sends an Id of
584654</1Id><Price>0.99</Price>
</ProductResponse>
<ProductResponse><Id>123

« Sever reply becomes
<?xml version="1.0"?>
<ProductResponse>

<I1d>584654</1d><Price>0.99</Price>
</ProductResponse>
<ProductResponse><Id>123
</Id>

<Price>199.99</Price>
</ProductResponse>

Effect of XML Injection

» Depends on how server handles a strange
response like that

* Most would accept the first XML portion
with the modified price

XML Injection Countermeasures

 Input validation

— Best done with whitelisting (allowing only
known-good characters)

* Qutput encoding
— Change "<" to "<"

» Use encoding functions from a trusted
source, such as OWASP

XML Entity Expansion

* A Denial-of-Service (DoS) attack using XML
entities that expand greatly at process
time

 The example sends a 662-byte request
that expands to 20 MB at the server

* Enough of these requests can stop a
server by RAM exhaustion

XML Entity Expansion

<?xml version="1.0"?>

<!DOCTYPE root [<ENTITY al "I've often
seen a cat without a grin...">]>

<someElementl><someElement2>&al;
</someElement2></someElementl1>

Expands to
<?xml version="1.0"?>
<someElementl><someElement2>

I've often seen a cat without a grin...</
someElement2></someElementl>

XML Entity Expansion Example

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 662

<?xml version="1.0"?>

<!DOCTYPE root |

<ENTITY al "I've often seen a cat without a grin...">
<ENTITY a2 "&al;&al; "><ENTITY a3 "&a2;&a2;">

<ENTITY a4 "&a3;&a3; "><ENTITY a5 "&a4d;&ad;">

<ENTITY a20 "&al9;&al9;">

1>
<someElementl><someElement2>&a20;</someElement2></
someElementl>

XML Entity Expansion Countermeasures

* Disable Document Type Definitions (DTDs)
in the XML parser

* Set a limit on the depth of entity
expansions in the parser

* Note: phones have XML parsers too, and
can be attacked the same way
— The i0S NSXMLParser parser is protected
— But not Android’'s SAXParser

XML Entity Reference

» Abuse XML entities to acquire the
contents of files on the Web server

* The example on the next page defines an
external entity reference "fileContents”
that points to the hosts file on Windows
and uses it

XML Entity Reference Example

POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 196

<?xml version="1.0"?>
<!DOCTYPE fileDocType = [

<ENTITY fileContents SYSTEM "C:\Windows
\System32\drivers\etc\hosts">

1>
<someElementl><someElement2>&fileContents;</
someElement2></someElementl>

XML Entity Reference

* If the XML parser supports DTDs with
external entities

— Many parsers do by default

— The parser will fetch the host file and may

display the file in the XML response to the
attacker

— It's limited only by file permissions

— If the Web service runs as root, it can read
any file

XML Entity Reference

» Can be used for DoS by
— Requesting a special device file, or

— Forcing the parser to make many HTTP
requests to remote resources, exhausting the
network connection pool

XML Entity Reference Countermeasures

* Disable DTDs altogether if you don't need
them

* Allow DTDs that contain general entities,

but
— Prevent the processing of external entities

* Set up an EntityResolver object to limit
access to a whitelist of resources

XML Entity Reference

« Can attack phones too

— Android is vulnerable and the same
countermeasures apply

— The 10S NSXMLParser class does not handle
external entities by default, but a developer
can enable this dangerous functionality

Common Authentication and
Authorization Frameworks

Authentication Issues

* Web apps typically authenticate with
passwords

— S0 do mobile apps

» Users don't want to type in the password
every time they use an app

— Storing user’s credentials in plaintext is
unwise

Credential Storage Options

* Secure Element (SE)
— A special tamper-resistant hardware component

— Not present in all phones, although some have
one for NFC payment (link Ch 6h)

» Authorization Framework
— Such as OAuth
— First authenticates a user with a password
— Creates a token to be stored on the phone
— Less valuable than a password to an attacker

Recommendations

» Token can be made less dangerous
— Set reasonable expiration dates
— Restrict token's scope

— Revoke tokens that are known to be
compromised

* For financial apps
— Don't store any token at all on client-side

— Force the user to authenticate each time the
app is used

OAuth 2
Open Authorization

* Popular
— Used by Google, Facebook, Yahoo!, LinkedIn,
and PayPal
» Allows one app to access protected
resources in another app without knowing
the user’s credentials

— Like Microsoft's Federated ldentity
Management

Main Actors in OAuth 2

« Resource owner

— End-user with access to credentials, who
owns the protected resources

* Resource server
— Server hosting protected resources

— Allows client access to the protected
resources when provided a valid access token

Main Actors in OAuth 2

e Client

— App seeking to access protected resources
— Typically a mobile app or web app

* Authorization Server
— Server that provides the client application
with access tokens

« After the resource owner has provided valid
credentials

OAuth 2 has Four Grant Types

Client Credentials Grant

Resource Owner Password Credentials Grant
Authorization Code Grant

Implicit Grant

"User Agent” in these diagrams is either your
mobile browser or a WebView component
embedded within the application

OAuth Client Credentials Grant

Authorization
Client server

> I8

2) Access token '
<

1) Client authentication

 Stores password on client
 Should only be used for confidential clients
— That can maintain the confidentiality of their credentials

* Not usually appropriate for mobile devices because
of device theft

OAuth Client Credentials Grant

* OK if mobile app has access to a Secure
Element (SE)

— But most mobile apps cannot interface with a SE

* This grant type should be avoided

— Unless app takes additional steps to protect
authentication info

— Such as forcing user to enter a complex password
every time the app launches

— Password used to encrypt/decrypt authentication
info

OAuth Resource Owner Password
Credentials Grant Type

Resource Authorization
owner Client server

1) Password credentials . 2) Password credentials > .
, 3) Access token '
‘

« App is trusted with credentials, but need not
save them

* |t can save the token instead

OAuth Resource Owner Password
Credentials Grant Type

* OK if
— Client app is trusted not to leak credentials
to a third party

— Same entity controls authorization server,
resource server, and client app
» Better than storing credentials in
plaintext on the mobile device and
submitting them in every HTTP request

OAuth Authorization Code Grant Type

Resource Authorization
owner server
1) Client ID & Redirect URI .
>
2 r hentication
) »| Useragent 2) User authenticatio . |
< 3) Authorization code '
1) 3)
4) Authorization code &
Redirect URI
5) Access token
<

Client

OAuth Authorization Code Grant Type

» 1. Client directs user-agent (browser or
WebView component) to authorization
endpoint

* Request includes
— Client identifier
— Requested scope
— Local state
— Redirection URI

Using Mobile WebView to Steal
Credentials

* In theory, client app cannot access resource
owner's credentials

— Because resource owner types credentials on
the authorization server's web page

— Via user-agent, typically a browser
 If a mobile app uses a WebView component
instead of an external mobile browser

— Client app can steal credentials with malicious
JavaScript

URL Redirection Attacks

 The URI in steps 1 and 4 could be
malicious, sending the client to a
dangerous website

— This could phish users, or steal tokens

* URIs should be validated, and enforced to
be equal in steps 1 and 4

OAuth Implicit Grant Type

Resource
owner

1) Client ID & Redirect URI

2)

User-agent

Authorization

2) User authentication

>

3) Redirect URI with access
token in fragment

>

1) 4 4
6) Access token

v

4) Redirect URI
without fragment

>

.'

5) Script

Client

server

> CH blog.httpwatch.com/2011/03/01/6-things-you-should-know-about-fragment-ur

6 Things You Should Know About Fragment URLs

https://samsclass.info/128/128_515.shtml#projects
* The "#projects” is a fragment

* Not sent to server in HTTP request

— Used only by the browser to display the specified
potion of the page

— Link Ch 6i

OAuth Implicit Grant Type

Token not sent to server in step 4

In step 5, server sends JavaScript to get the
token

Intermediate servers cannot see data
stored in the fragment

Fragment does not appear in an
unencrypted form in client or web server
logs

— Limits some information leakage vulnerabilities

General OAuth Threats

Lack of TLS Enforcement

* OAuth does not support message-level
confidentiality or integrity
* Must use TLS to prevent sniffing of
— Authorization tokens
— Refresh tokens
— Access tokens
— Resource owner credentials

Cross-Site Request Forgery (CSRF)

» Attacker can steal a token by tricking the
user into visiting a malicious URL like

<img src="http://www.example.com/
oauth_endpoint?code=attacker_code">

* Will steal token

* Tokens can be re-used, unless optional
"state” parameter is enabled in OAuth 2

Improper Storage of Sensitive Data

» Server-side has many tokens and
credentials

* Must be secured against attack with
cryptographic controls

Overly Scoped Access Tokens

» Scope: level of access a token grants

» Token may enable

— Sending social networking messages on your
behalf, or

— Merely viewing portions of your social
messaging profile

* Follow principle of least privilege

Lack of Token Expiration

» Tokens that don't expire and are overly
scoped are almost as good as stealing
credentials
— Sometimes even better

— A password reset may not cause old tokens to
expire

