
Ch 6: Mobile Services and  
Mobile Web 

Part 1

CNIT 128:
Hacking Mobile

Devices
Updated 2-22-17

Ch 6 Part 1
Through OAuth

Part 2 starts with SAML

Server-Side Technologies

• SQL (Structured Query Language)
– Servers that manage databases
– Contain SSNs, credit card numbers,

sometimes passwords, etc.

Server-Side Technologies

• SOAP (Simple Object Access Protocol)
– XML-based middleware to exchange data

between servers and clients
– Can operate over any transport protocol such

as HTTP, SMTP, TCP, UDP, or JMS (link Ch 6a)
– Examples on next slides from link Ch 6l

JSON v. XML

• From link Ch 6n

 JSON XML

Server-Side Technologies
• ReST (Representational State Transfer)
– Uses HTTP to transfer data between machines
– The World Wide Web can be viewed as a REST-

based architecture (link Ch 6c)
– Send data with PUT, get it with GET (link Ch 6n)

Server-Side Technologies

• JSON (JavaScript
Object Notation)
– Lightweight

data-interchange
format

– An alternative to
XML (link Ch 6b)

– Example from
link Ch 6m

Server-Side Vulnerabilities

• Expose far more data than client-side
vulnerabilities

• Larger attack surface than client
– Server runs services, some for clients, others

for business logic, internal interfaces,
databases, partner interfaces, etc.

General Web Service Security
Guidelines:

OWASP Top Ten Mobile Risks
2016

Link Ch 6k

Attacks Against XML-Based
Web Services

Security Audit of XML-Based Web
Service

• Identify web service endpoints
– By examining source code of client
– Or examining Web traffic while client runs

• Craft legitimate web service requests
– For all endpoints and operations

• Vulnerability Discovery
– By altering structure of contents of XML

documents sent to the web service endpoints

Web Services Description Language
(WSDL)

• An XML-based
interface
description language
– Used to describe

functionality offered
by a Web service

– Image from
Wikipedia (link Ch
6f)

SoapUI

• SoapUI can build a set of base test cases given a
URL to an identified WDSL
– Link Ch 6g

XML Injection Example

• Client sends
<?xml version="1.0"?>
<ProductRequest>

<Id>584654</Id>
</ProductRequest>

• Sever replies, echoing Id from client
<?xml version="1.0"?>
<ProductResponse>

<Id>584654</Id>
<Price>199.99</Price>

</ProductResponse>

XML Injection Example

• Client sends an Id of
584654</Id><Price>0.99</Price>
</ProductResponse>
<ProductResponse><Id>123

• Sever reply becomes
<?xml version="1.0"?>
<ProductResponse>

<Id>584654</Id><Price>0.99</Price>
</ProductResponse>
<ProductResponse><Id>123
</Id>

<Price>199.99</Price>
</ProductResponse>

Effect of XML Injection

• Depends on how server handles a strange
response like that

• Most would accept the first XML portion
with the modified price

XML Injection Countermeasures

• Input validation
– Best done with whitelisting (allowing only

known-good characters)

• Output encoding
– Change "<" to "<"

• Use encoding functions from a trusted
source, such as OWASP

XML Entity Expansion

• A Denial-of-Service (DoS) attack using XML
entities that expand greatly at process
time

• The example sends a 662-byte request
that expands to 20 MB at the server

• Enough of these requests can stop a
server by RAM exhaustion

XML Entity Expansion

<?xml version="1.0"?>
<!DOCTYPE root [<ENTITY a1 "I've often
seen a cat without a grin...">]>
<someElement1><someElement2>&a1;  
</someElement2></someElement1>

Expands to
<?xml version="1.0"?>
<someElement1><someElement2>
I've often seen a cat without a grin...</
someElement2></someElement1>

XML Entity Expansion Example
POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 662

<?xml version="1.0"?>
<!DOCTYPE root [
<ENTITY a1 "I've often seen a cat without a grin...">
<ENTITY a2 "&a1;&a1;"><ENTITY a3 "&a2;&a2;">
<ENTITY a4 "&a3;&a3;"><ENTITY a5 "&a4;&a4;">
...
<ENTITY a20 "&a19;&a19;">
]>
<someElement1><someElement2>&a20;</someElement2></
someElement1>

XML Entity Expansion Countermeasures

• Disable Document Type Definitions (DTDs)
in the XML parser

• Set a limit on the depth of entity
expansions in the parser

• Note: phones have XML parsers too, and
can be attacked the same way
– The iOS NSXMLParser parser is protected
– But not Android's SAXParser

XML Entity Reference

• Abuse XML entities to acquire the
contents of files on the Web server

• The example on the next page defines an
external entity reference "fileContents"
that points to the hosts file on Windows
and uses it

XML Entity Reference Example
POST /SomeWebServiceEndpoint HTTP/1.1
Host: www.example.com
Content-Length: 196

<?xml version="1.0"?>
<!DOCTYPE fileDocType = [
<ENTITY fileContents SYSTEM "C:\Windows
\System32\drivers\etc\hosts">
]>
<someElement1><someElement2>&fileContents;</
someElement2></someElement1>

XML Entity Reference

• If the XML parser supports DTDs with
external entities
– Many parsers do by default
– The parser will fetch the host file and may

display the file in the XML response to the
attacker

– It's limited only by file permissions
– If the Web service runs as root, it can read

any file

XML Entity Reference

• Can be used for DoS by
– Requesting a special device file, or
– Forcing the parser to make many HTTP

requests to remote resources, exhausting the
network connection pool

XML Entity Reference Countermeasures

• Disable DTDs altogether if you don't need
them

• Allow DTDs that contain general entities,
but
– Prevent the processing of external entities

• Set up an EntityResolver object to limit
access to a whitelist of resources

XML Entity Reference

• Can attack phones too
– Android is vulnerable and the same

countermeasures apply
– The iOS NSXMLParser class does not handle

external entities by default, but a developer
can enable this dangerous functionality

Common Authentication and
Authorization Frameworks

Authentication Issues

• Web apps typically authenticate with
passwords
– So do mobile apps

• Users don't want to type in the password
every time they use an app
– Storing user's credentials in plaintext is

unwise

Credential Storage Options

• Secure Element (SE)
– A special tamper-resistant hardware component
– Not present in all phones, although some have

one for NFC payment (link Ch 6h)

• Authorization Framework
– Such as OAuth
– First authenticates a user with a password
– Creates a token to be stored on the phone
– Less valuable than a password to an attacker

Recommendations

• Token can be made less dangerous
– Set reasonable expiration dates
– Restrict token's scope
– Revoke tokens that are known to be

compromised

• For financial apps
– Don't store any token at all on client-side
– Force the user to authenticate each time the

app is used

OAuth 2  
Open Authorization

• Popular
– Used by Google, Facebook, Yahoo!, LinkedIn,

and PayPal

• Allows one app to access protected
resources in another app without knowing
the user's credentials
– Like Microsoft's Federated Identity

Management

Main Actors in OAuth 2

• Resource owner
– End-user with access to credentials, who

owns the protected resources

• Resource server
– Server hosting protected resources
– Allows client access to the protected

resources when provided a valid access token

Main Actors in OAuth 2

• Client
– App seeking to access protected resources
– Typically a mobile app or web app

• Authorization Server
– Server that provides the client application

with access tokens
• After the resource owner has provided valid

credentials

OAuth 2 has Four Grant Types

• Client Credentials Grant
• Resource Owner Password Credentials Grant
• Authorization Code Grant
• Implicit Grant

• "User Agent" in these diagrams is either your
mobile browser or a WebView component
embedded within the application

OAuth Client Credentials Grant

• Stores password on client
• Should only be used for confidential clients

– That can maintain the confidentiality of their credentials

• Not usually appropriate for mobile devices because
of device theft

OAuth Client Credentials Grant

• OK if mobile app has access to a Secure
Element (SE)
– But most mobile apps cannot interface with a SE

• This grant type should be avoided
– Unless app takes additional steps to protect

authentication info
– Such as forcing user to enter a complex password

every time the app launches
– Password used to encrypt/decrypt authentication

info

OAuth Resource Owner Password
Credentials Grant Type

• App is trusted with credentials, but need not
save them

• It can save the token instead

OAuth Resource Owner Password
Credentials Grant Type

• OK if
– Client app is trusted not to leak credentials

to a third party
– Same entity controls authorization server,

resource server, and client app

• Better than storing credentials in
plaintext on the mobile device and
submitting them in every HTTP request

OAuth Authorization Code Grant Type

OAuth Authorization Code Grant Type

• 1. Client directs user-agent (browser or
WebView component) to authorization
endpoint

• Request includes
– Client identifier
– Requested scope
– Local state
– Redirection URI

Using Mobile WebView to Steal
Credentials

• In theory, client app cannot access resource
owner's credentials
– Because resource owner types credentials on

the authorization server's web page
– Via user-agent, typically a browser

• If a mobile app uses a WebView component
instead of an external mobile browser
– Client app can steal credentials with malicious

JavaScript

URL Redirection Attacks

• The URI in steps 1 and 4 could be
malicious, sending the client to a
dangerous website
– This could phish users, or steal tokens

• URIs should be validated, and enforced to
be equal in steps 1 and 4

OAuth Implicit Grant Type

https://samsclass.info/128/128_S15.shtml#projects
• The "#projects" is a fragment
• Not sent to server in HTTP request
– Used only by the browser to display the specified

potion of the page
– Link Ch 6i

OAuth Implicit Grant Type

• Token not sent to server in step 4
• In step 5, server sends JavaScript to get the

token
• Intermediate servers cannot see data

stored in the fragment
• Fragment does not appear in an

unencrypted form in client or web server
logs
– Limits some information leakage vulnerabilities

General OAuth Threats

Lack of TLS Enforcement

• OAuth does not support message-level
confidentiality or integrity

• Must use TLS to prevent sniffing of
– Authorization tokens
– Refresh tokens
– Access tokens
– Resource owner credentials

Cross-Site Request Forgery (CSRF)

• Attacker can steal a token by tricking the
user into visiting a malicious URL like
<img src="http://www.example.com/
oauth_endpoint?code=attacker_code">

• Will steal token
• Tokens can be re-used, unless optional

"state" parameter is enabled in OAuth 2

Improper Storage of Sensitive Data

• Server-side has many tokens and
credentials

• Must be secured against attack with
cryptographic controls

Overly Scoped Access Tokens

• Scope: level of access a token grants
• Token may enable
– Sending social networking messages on your

behalf, or
– Merely viewing portions of your social

messaging profile

• Follow principle of least privilege

Lack of Token Expiration

• Tokens that don't expire and are overly
scoped are almost as good as stealing
credentials
– Sometimes even better
– A password reset may not cause old tokens to

expire

