
Ch 4: Android

CNIT 128:
Hacking Mobile

Devices
Updated 2-21-17

Android is #1

• 81.7% market share in 2016
• Links Ch 4z75, 76

Open Source

• Android itself is open source (Link Ch 4b)
• But the Google apps included with most

Android phones are closed-source
• Many device manufacturers and carriers

modify Android
– Closed-source device drivers and apps
– Leads to fragmentation: two devices with the

same hardware but different carriers can be
running very different software

– More total sales, many different Android devices

Fragmentation

• Updates are essential for security
• Very big problem for Android
– Data from links Ch 1v, 1w

Android Architecture

Linux Kernel

• A way for applications to interact with
devices

• Manages processes and memory
• Android versions prior to 4.0 used 2.6

Linux kernel (with modifications)
• Later versions based on 3.x or 4.x Linux

Kernels
• Link Ch 4z77

Linux Kernel Versions

Libraries

– OpenGL (for 2D/3D graphics)
– SQLite for databases
–WebKit (for rendering Web pages)
– Others

• Written in C/C++
• Also Dalvik VM and core Java libraries
• All this together is called the "Android

Runtime" component

Application Framework

• A way for Android apps to access
– Telephone functionality
– Creating UI (User Interface) elements
– GPS
– File system

• Important in Android security model

Apps

• Usually Written in Java
– Compiled to Dalvik bytecode using the

Android Software Development Kit (SDK)

• Can also be written in C/C++
– Using Native Development Kit (NDK)

Security Model

Permission Based

• Apps must be explicitly granted
permission to take action

• Permissions enforced in two places
– Kernel level
– Application Framework level

Kernel Permissions

• Each app has a unique user ID
– File ownership based on User ID

• Can only access the resources and
functionality it has explicit permissions
for

• This is "sandboxing"
– Apps cannot access resources of other apps
– Apps cannot access hardware components

they have not been given permission to use

Viewing Users with ps

• System processes run as root

Viewing Users with ps

• Apps run as u0_a1, u0_a2, etc.

• Permissions for data directories

Application Framework Access Control

• App must declare a
permission for each
component it accesses in its
manifest file
– AndroidManifest.xml

• Permissions are shown to the
user at install time
– User can chose whether to

allow the permissions
– If not, the app can't be installed

• Once installed, the app has
only those permissions, such
as
android.permission.INTERNET

Many Permissions are Available

• Link Ch 4d

Permission Categories

• Normal
– Low-risk
– Don't require explicit approval from users at

install time

• Dangerous
– Require explicit approval from users at install

time

Permission Categories

• Signature
– Defined by an application in its manifest
– Functionality exposed by applications that

declare this permission can only be accessed by
other applications that were signed by the
same certificate

• signatureOrSystem
– Same as Signature, but applications installed on

the /system partition can also access this
functionality

App Signing

• All apps must be signed to be installed
• Android allows self-signed certificates
– Developers can generate their own signing

certificates

• The only security mechanisms that use
signatures are the signature or
signatureOrSystem permissions

Address Space Layout Randomization
(ASLR)

• Added in Android 4.0
• Makes it more difficult to exploit memory

corruption issues
• Randomizes locations of key memory sections
– Such as stack and heap

• In 4.0, several locations, including the heap
were not randomized

• Android 4.1 has full ASLR

No eXecute (NX) Bit

• Added in Android 2.3
• Allows you to set the heap and stack as

nonexecutable
– Helps prevent memory corruption attacks

Application Components

Four Components

• Activities, Content providers, Broadcast
receivers, Services
– Entry points: ways the user or another app on

the same device can enter

• The more components that are exported,
the larger the attack surface
– Component header will contain this line:  

android:exported="true'

Intents

• Applications primarily use intents
– Asynchronous messages

• To perform interprocess, or
intercomponent, communication

Activities

• Define a single screen of an applications
user interface

• Android promotes reusability of activities
• This saves developers time and work
• Increases the attack surface of an app

Content Providers

• Exposes ability to query, insert, update, or
delete application-specific data
– to other apps and internal components

• App might store data in SQLite database or
a flat file

• Calling component won't know what
storage method is used

• Poorly written content providers may
expose data or be vulnerable to SQL
injection

Broadcast Receivers

• Respond to broadcast intents
• Apps should not blindly trust data from

broadcast intents
– It could be from a hostile app or a remote

system

Services

• Run in the background
• Perform lengthy operations
• Started by another component when it

sends an intent
• Services should not blindly trust the data

contained within the intent

Data Storage

• Internal storage in nonvolatile
memory (NAND flash)
– Private to one app

• External storage on an SD
card
– Also NAND flash, but removable
– Available to all apps
– Image from amazon.com

File Types

• Apps are free to create any type of file,
but the API comes with support for
– SQLite databases
– Shared preference files in an XML-based

format

• SQL injection attacks are a risk, via
intents or other input

NFC (Near Field Communication)

• Radio communication, including
– NFC tags
– Some RFID tag protocols
– Contactless smart cards
– Mobile devices

• Short range: a few cm
– image from newegg.com

NFC in Android

• Introduced in 2010 with Gingerbread
• Expanded in 2.3.3 to support a variety of

NFC formats
• Card Emulation mode came In 2.3.4
– An NFC reader can read data from the Secure

Element (SE) within the phone
– Card emulation is not exposed via the Android

SDK
– Only Google or carriers have this capability

Google Wallet

• Lets you use your phone
for a credit card

• Released with Android
2.3.4

NFC Peer-to-Peer

• Allows two NFC-enabled devices to
communicate directly

• Android Beam allows users to share data
by tapping their devices together

• NFC tags are also used in advertisements

Android Development

SDK (Software Development Kit)

• Allows developers to build and debug
Android apps
– Runs on Windows, Mac OS X, or Linux

• In Dec., 2014, Google released Android
Studio
– A full IDE (Integrated Development

Environment)
– Links Ch 4e, 4f

Android Emulator

• Helps developers
test apps without
an actual mobile
device

• Simulates
common hardware
– ARMv5 CPU
– SIM card
– Flash memory

partitions

Value of the Emulator

• Allows developers and researchers to test
Android apps quickly in different versions of
Android

• Drawbacks
– Android Virtual Device (AVD) cannot send or

receive phone calls or SMS messages
– But it can emulate them, and send them to other

AVDs

• Can define an HTTP/HTTPS proxy to intercept
and manipulate Web traffic

Android Debug
Bridge

• Command-line tool
• Allows you to communicate with a mobile

device via a USB cable or an SVD running
within an emulator

• Connects to device's daemon running on
TCP port 5037

Useful ADB Commands

• push
– Copies a file from your computer to the mobile

device

• pull
– Copies a file from the mobile device to your

computer

• logcat
– Shows logging information on the console
– Useful to see if an app or the OS is logging

sensitive information

Useful ADB Commands

• install
– Copies an application package file (APK) to

the mobile device and installs the app
– Useful for side-loading apps (so you don't

have to use Google Play)

• shell
– Starts a remote shell on the mobile device
– Allows you to execute arbitrary commands

END OF PART 1

Rooting

Root

• The root user can directly access system
resources

• Bypassing the permissions checks normally
required

• Giving the app that runs as root full
control over the device and other apps
running on it

GingerBreak (CVE-2011-1823)

• Gains root on
– Many Gingerbread (Android 2.3.x) devices
– Some Froyo (2.2.x)
– Some Honeycomb (3.x.x)

How Gingerbreak Works

• Vulnerability in volume manager daemon
– /system/bin/vold

• Method
DirectVolume::handlePartitionAdded
– Sets an array index using an integer passed in
– Does not check for negative integers
– Using negative values, exploit can access

arbitrary memory locations

How Gingerbreak Works

• Exploit writes to vold's global offset table
(GOT)

• Overwrites several function calls
– such as strcmp() and atoi()

• With calls to system()
• Then another call to vold to execute an

app via system(), with vold's elevated
privileges

GingerBreak

• Packaged into several rooting tools
– Such as SuperOneClick

• And some one-click rooting APKs
– Malicious app could include GingerBreak as a

way to gain elevated privileges on a device

GingerBreak Countermeasures

• Update your device
– GingerBreak exploit was fixed in Android

2.3.4

• But some manufacturers/carriers don't
allow updates

• Antivirus apps should detect the presence
of GingerBreak
– An alternative

Ice Cream Sandwich  
init chmod/chown Vuln

• Vuln introduced with Ice Cream Sandwich
(4.0.x) in init

• If the init.rc script has an entry like this
–mkdir /data/local/tmp 0771 shell shell

• Even if the mkdir failed, init would set
the ownership and permissions for the
shell user
– The ADB user

Symlink

• If /data/local is writable by the shell
user,

• Creating a symlink to /system there
allows the ADB user read/write access to
the /system partition

• ADB user can add files to /system, such as
su

• Thus gaining root access to a device

Ice Cream Sandwich  
init chmod/chown Countermeasures

• Keep devices updated
• Make sure Android debugging is turned off
• And keep device locked, so attacker can't

turn it on

Decompiling and Disassembly

Static Analysis

• Source code is generally kept confidential
by app developers

• A binary, compiled app can be analyzed by
disassembling or decompiling them, into
– Smali assembly code (used by Dalvik VM), or
– Java code

Java v. Smali Code

Building & Signing an App

Monitoring the Log

Attacks via Decompiling and
Disassembly

• Insert Trojan code, like keyloggers
• Find encryption methods & keys
• Change variables to bypass client-side

authentication or input validation
• Cheat at games

• Link Ch 4z43

Decompiling, Disassembly, and
Repackaging Countermeasures

• Every binary can be reverse-engineered
– Given enough time and effort

• Never store secrets on the client-side
• Never rely on client-side authentication or

client-side validation
• Obfuscate source code
– ProGuard (free) or Arxan (commercial)

DashO – Powerful Obfuscator

All Strings Concealed

• BUT it costs $2000

Intercepting Network Traffic 
 

"Man in the Middle" (MITM)
Attacks

HTTP Traffic

• Trivial to intercept
• No protections
• Any hacker in a coffeehouse can do it with
– ARP poisoning
– A rogue access point like the WiFi Pineapple

• Very difficult for the end user to detect

HTTPS

• Specifically designed to
prevent MITM attacks

• Only very powerful
adversaries like nation-
states or big
corporations can get real
Certificate Authority
certificates

• Without one, targets will
see a warning like this

Problems

• End-users are not often aware of the
difference between HTTP and HTTPS

• The mobile app may not display any
information about the connection

• Mobile apps don't always verify all the
security features in HTTPS, so users get
less protection

Auditing HTTPS
Traffic

• If you want to see
HTTPS traffic, you
must import your
proxy's certificate
into your test mobile
device

• With "Install from SD
Card" option in
Settings

Manipulating Network Traffic
Countermeasures

• Don't disable certificate verification and
validation
– Often done during development and

debugging for convenience
– May be left that way when app is distributed

• Example of trust chain

Certificate Pinning
• Adds another layer of verification to

certificates
• Browser knows which CA should validating

sites
– Either by consulting a whitelist maintained by

Google, or
– Remembering which CA was used the first time

the site was used

• Warns user if CA changes
– Link Ch 4z62

Don't Trust the Client

• Any data from the client may be malicious
• Perform strict input validation and output

encoding on the server side

Intent-Based Attacks

Intents

• Primary inter-process communication
(IPC) method used by Android apps

• Intents can start internal components, or
pass data to them, or go to other apps

• Those are called "External Intents"
• Links Ch 4z62-64

Code to Send an SMS Intent

• Receiving app needs an "Intent Filter" like
– android.provider.Telephony.SMS_RECEIVED

• If an app is not running, receiving an Intent starts
it

• Malicious intents can launch other apps, and
inject data into them

Command Injection Example

• A test app saves files on the SD card, with
this Intent Filter

Method to Create File

• Executes a shell command, injecting the
filename from the calling app

Command Injection

• Suppose the calling app sends a filename
of:
– "MyFIle.txt; cat /data/data/com.test/

secrets.xml > /sdcard/secrets.xml"

• The exploit will expose any secrets the
test app can access

Command Injection Countermeasures

• Don't make Intents "exported" unless they
are really needed by other apps
– Leave them internal to their own app

• Perform input validation on all data
received from intents
– Block special characters like ";" and ">" in a

filename

Command Injection Countermeasures

• Custom permissions will warn the user that
an App has permissions when it is installed
– Not much use, in practice

• Signature-level permissions
– Require any app that wants to send intents to be

signed with the same key as the receiving app
– That is, from the same company
– This can be defeated by re-signing the app

NFC-Based Attacks 
(Near Field Communication)

Image from techmoran.com

Malicious NFC Tags

• An NFC tag can contain a URL pointing to
a malicious site
– Such as a WebKit exploit

• Tags are cheap to buy online
• Can be written to by any NFC-enabled

phone

• From www.slideshare.net/chunkai1312

NFC Attacks

• Attackers can make poster with malicious
tags

• Or replace tags on existing posters
• Or overwrite NFC tags in place
– If the tag was not properly write-protected

• Tag could send user to Google Play
• Tag could directly attack an app that uses

NFC with unexpected input

Malicious NFC Tag Countermeasures

• Keep NFC disabled when you aren't using
it

• Unfortunately, there's no way to tell if a
tag is malicious without reading it
– Unless there is evidence of tampering

• Developers need to validate data from
NFC

• Tags must be write-protected

Attacking Apps via NFC Events

• Android allows apps to create fake NFC
Intents
– Creating a fake NFC tag

• There's an NFCDemo App
• So a vulnerable NFC-using app could be

exploited even without an NFC tag

NFC Event Countermeasures

• Validation of data received from NFC tags
• Custom permissions, or making the

Activity private, won't work here
– App must receive NFC intents from an

external source

Information Leakage

Leakage via Internal Files

• Each app has a unique User Identifier (UID)
and Group Identifier (GID)
– App runs as that user

• But an app can create a file set to
– MODE_WORLD_READABLE or
– MODE_WORLD_WRITEABLE

• That file would be visible to all apps on the
device, and could be sent to the Internet
by any app with INTERNET permission

Android SQLite Journal Information
Disclosure (CVE-2011-3901)

• SQLite engine created its rollback journal
as globally readable and writeable

• Normally deleted after each transaction
• But setting improper permissions allows

hostile apps on the same device to read
– Personal info., session tokens, URL history,

etc.

LinkedIn App's Rollback Journal

SQLite Journal Information Disclosure
Countermeasures

• Install latest patches
• App developers should avoid creating

world-readable or world-writeable files

• Skype App stored personal data in world-
readable files
– Link Ch 4z65

Leakage via External Storage

• Files stored on the SD card
– Or the emulated SD card

• Are globally readable and writeable to
every app on the device

• Apps should only store data they want to
share on external storage

• App seems to never have been updated, and later
removed from the Google Play Store
– Links Ch 4z66-67

Nessus Information Disclosure
Countermeasures

• Credentials should not be stored in
plaintext

• They should be encrypted
– One good system is AES
– Key from Password-Based Key Derivation

Function 2 (PBKDF2)
– Using a password from the user and a device-

specific salt

Information Leakage via Logs

• Every app can read the logs, if it requests
the android.permission.READ_LOGS
permission at install time

• Some developers don't realize this and put
sensitive information into the logs

• Link Ch 4z68

Facebook SDK Information Disclosure in
the Log

• Facebook promptly patched it
– Link Ch 4z69

Facebook SDK Information Disclosure
Countermeasures

• Update Facebook SDK to latest version
• App developers should not log any

sensitive information

Information Leakage via
Insecure Components

• Link Ch 4z70

content:// URI Scheme Leaks Contents
of SD Card

• Link Ch 4z71

content:// URI Scheme Information
Disclosure Countermeasures

• Patched poorly in 2.3, and re-patched in
2.3.4

• End user can do these things:
– Use a different browser, such as Opera
– Disable JavaScript in the Android browser

(impractical)
– Unmount the SD card (impractical because

many apps need it)

General Mitigation v.  
Information Leakage

• Logs
– Don't log sensitive info.

• Files, shared preferences, and SQLite
databases
– Don't store sensitive info. in plaintext
– Don't create globally readable or writeable files
– Don't store sensitive info. on SD card without

encrypting it properly

General Mitigation v.  
Information Leakage

• WebKit (WebView)
–WebView is the Android class that displays

Web pages in WebKit
– Apps should clear the cache periodically if it's

used to view sensitive websites
– App can disable caching

General Mitigation v.  
Information Leakage

• WebKit (WebView) continued
–WebKit stores sensitive data in the app's data

directory, including
• Previously entered form data
• HTTP authentication credentials
• Cookies

– On a non-rooted device, other apps won't be
able to steal data from the WebKit data store

– But if a phone is stolen and rooted, that data
can be taken

General Mitigation v.  
Information Leakage

• Inter-Process Communication (IPC)
– Don't expose sensitive info. via broadcast

receivers, activities, and services exposed to
other apps

– Don't send sensitive data in intents to other
processes

– Make components nonexportable

General Mitigation v.  
Information Leakage

• Networking
– Don't use network sockets for IPC
– Use TLS to transmit sensitive data
– CarrierIQ did this (next slide)
• Link Ch 4z72

HTC IQRD Android Permission Leakage

