
Ch 2: Hacking the Cellular Network

CNIT 128:
Hacking Mobile
Devices

Updated 1-14-16

Basics

GSM/CDMA

- We'll start with a standard carrier network using
 - Global System for Mobile (GSM), or
 - Code Division Multiple Access (CDMA)
- With these functions
 - Phone calls
 - Text messages via Short Message Service (SMS)
 - Multimedia Messaging Service (MMS)
 - Data connectivity via IP

Figure 2-1 Simplified GSM/CDMA mobile network

Basic Cellular Network Functionality

Interoperability

- Different carriers and connection methods can connect to one another seamlessly
- A GSM phone can text or call a CDMA phone

Functions to Target

- All major cellular networks support
 - Voice calls
 - Voice mail (VM)
 - Short Message Service (SMS)
 - Location-based Services (LBS)
 - IP Connectivity
- Most also support
 - Binary configuration messages
 - Multimedia messages (MMS)
 - Faxing

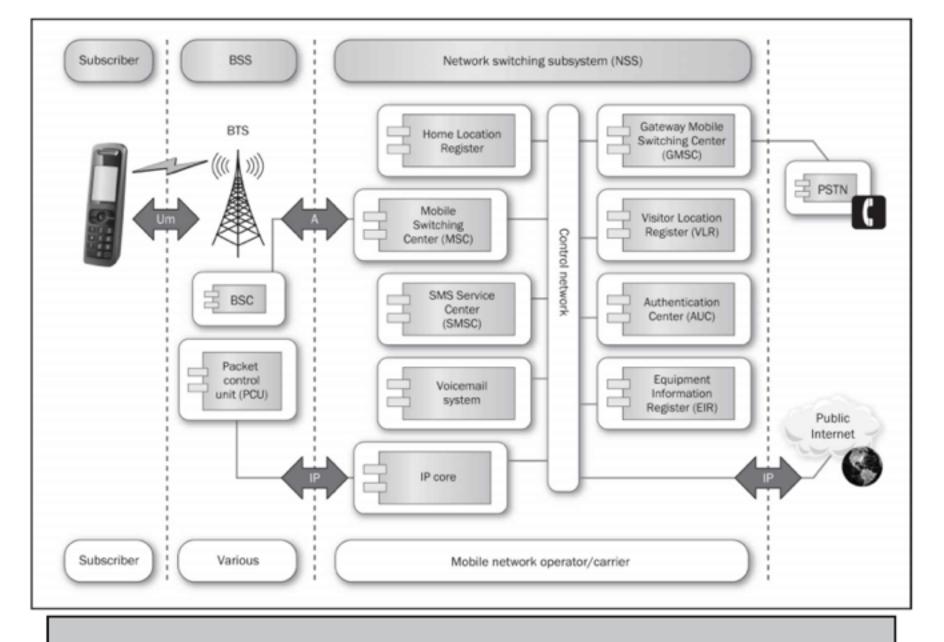


Figure 2-2 Service overview of a GSM cellular network

Players

- Customer is on the left
 - Known as Mobile Terminals (MTs) in GSM
- Connect to antennas
 - Called Base Transceiver Stations (BTS)
 - The connection from a mobile device to a BTS is called an Um (U-channel mobile)

Players

- Each BTS connects to a base station
 - A rack of equipment that takes the signals the antenna receives and converts them to digital packetized data
 - Base station has two components
 - Base Station Controller (BSC) for voice and control
 - Packet Control Unit (PCU) for forwarding IP packets and managing mobile IP

Players

- Base Station Subsystem (BSS)
 - Includes BTS, BSC, and PCU
 - Can be owned by people who are not part of a large carrier

Voice Calls

- Time Division Multiplexing (TDM)
 - Tried-and-true method for dividing radio capacity among many devices
- Time Division Multiple Access (TDMA)
 - Each device gets time slots
 - Very successful for slow and medium bit rates
 - Devices 1, 2, and 3 might get these time slots

1	2	3	1	2	3

Control Channels

- Traffic channels
 - Carry voice data
- Control channels
 - Manage association, usage, handoff, and disconnection
- Cell phone jammer
 - A loud, badly tuned, transmitter
 - Easy to build
 - Illegal

The Broadcast Control Channel: Learning About the Network

- When a device first turns on, it listens on standard frequencies
- First thing it hears will be BCCH (Broadcast Control Channel)
 - Allows the device to synchronize and understand which network it is attaching to
 - Features of the network the BTS (Base Transceiver Station) is serving

RACH (Random Access Channel)

- The mobile device then knows how to access the RACH
 - The first step in a GSM handshake
 - How the mobile asks for information
 - Mobile sends a channel request via the RACH
 - BTS tries to service the request

Standalone Dedicated Control Channel (SDDCH) & Access Granted Channel (AGCH)

- If the BTS has slots available, it assigns a control channel, called the Standalone Dedicated
 Control Channel (SDDCH) to the mobile device
- The BTS tells the mobile about this assignment via the Access Granted Channel (AGCH)
- Once the mobile has received a SDCCH, it's a member of the network and can request a location update

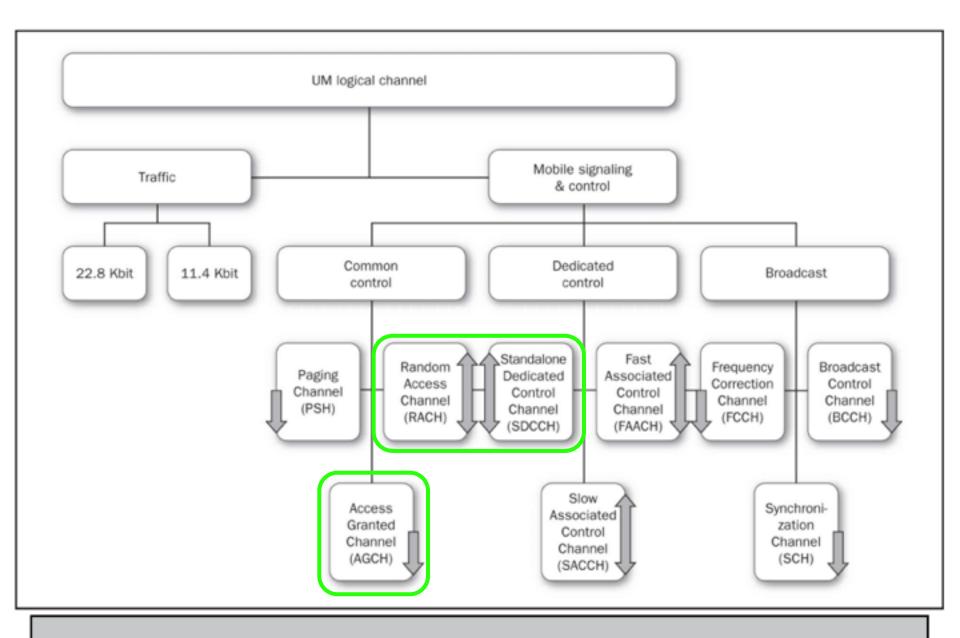


Figure 2-3 GSM logical control channel layout

Location Update

- Mobile device is telling the GSM network what area it's in
- Requires authentication with the network
- Informs the Home Location Register (HLR)
 - Database of subscriber information
- Of the mobile's geographic area
 - Hence, which Mobile Switching Center (MSC) a device is located within

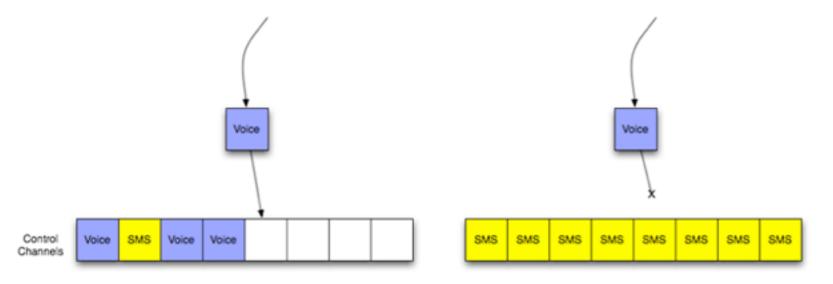
Sleep

- Once a mobile device has performed a location update
- The BSC tells the mobile to go to sleep
 - By deallocating the SDCCH
- This maximizes reuse and capacity in dense cells

Authentication and A5/1, CAVE, and AKA

- A5/* ciphers are used in GSM networks
 - Crackable see link Ch 2a
- CAVE and AKA are used in CDMA

GSM: SRSLY?


The worlds most popular radio system has over 3 billion handsets in 212 countries and not even strong encryption. Perhaps due to cold-war era laws, GSM's security hasn't received the scrutiny it deserves given its popularity. This bothered us enough to take a look; the results were surprising.

Voicemail

- Trivial hack: default password
 - Enough to make a world of trouble for Rupert Murdoch
- Many carriers use IP-based voicemail
 - Using IMAP servers (originally designed for email)

Short Message Service (SMS)

- Sent via control channel
- An SMS flood could DoS voice service for a whole city from a single attacking device
 - Link Ch 2b2

SMS Channels

- SMS messages are delivered over either
 - SDCCH when a user is not on a call
 - or the Slow Associated Control Channel (SACCH) if the user is talking at the time
- Reasonably achievable SMS floods wouldn't stop voice calls in practice

SMS Service Center (SMSC)

- SMSCs carry most of the SMS messages when SMS message storm happens
- It's the hardest working piece of equipment in modern cellular provider networks

Other Uses for SMS Messages

- Java implemented per-application messaging using
- Java Mobile Information Device Profile (MIDP) and Connected Limited Device Configuration (CLDC), which use a
- User Data Header (UDH) specifying a port to send the message to
 - Ports are not UDP or TCP ports, but similar

Other SMS Messages

- SMS is used not just between users
- But between network elements, like configuration servers
- For peer-to-peer Java apps
- UDH features
 - Changing reply-to phone number (UDH 22)
 - Message concatenation (UDH o8)
 - Message indicator settings—video, voice, text, email, fax (UDH 01)
 - Ported SMS message (UDH o5)

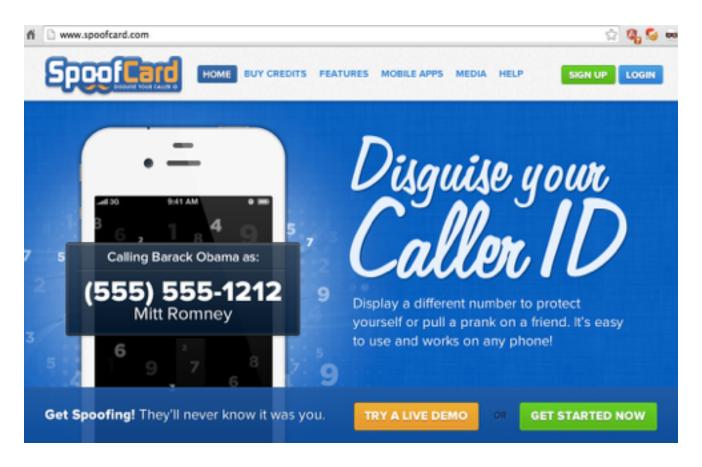
SMS Lacks Security Controls

- SMS messages have
 - No authentication
 - No integrity checking
 - No confidentiality
- So apps shouldn't trust what they get too much

SMS Origin Spoofing

- iOS displays the number in the "reply-to" field in the SMS header as the origin of an SMS message
 - Instead of the actual origin number
- So it's easy to send SMS messages that appear to come from someone else
 - Link Ch 2c

Fake SMS Messages


- On Android, a malicious app can fool your device into displaying a fake SMS message
 - Link Ch 2d

Attacks and Countermeasures

Hacking Mobile Voicemail

- MNOs often configure voicemail accounts insecurely
 - No authentication required if the user's own phone is used to fetch the messages
- With a PBX sever like Asterisk, anyone can easily spoof any caller ID value
- All they need is your phone number

Internet Spoofing Services

Link Ch 2f

Countermeasures for Mobile Voicemail Hacks

- Set a voicemail password
- Configure access so that entering the password is required from all phones, including yours

Rogue Mobile Devices

- An evil phone could attack the mobile network (theoretical attack only)
- Phone OS is not hard to understand, basically
 - iOS is BSD
 - Android is Linux
- A modified phone could jam or modify broadcast signals from a BTS
 - But it would only affect a small area

Rogue Mobile Device Countermeasures

- The cellular network is carved up into many small parts
- Radio earshot is only a few hundred yards in a city, or a few miles on flat terrain
- Just a normal radio jammer would be more effective

Early Rogue Station Attacks

- Until recently, carriers assumed that attackers lacked the skill to build a base station, so
- Network required authentication from the phone, but
- Phone didn't require authentication from the network
- So it was simple to emulate a cellular network

Attacking in the 1990s

- A cellular phone can simply "join up" with another cellular provider's network.
- Cellular phones are generally promiscuous when it comes to joining networks (how else would roaming be so easy?).
- Cellular networks are defined by a simple three-digit number and a three-digit country code, as shown in Table 2-1.

Country	Country Code	Selected Operators
United States	310, 311, 313, 316	T-Mobile: 026; ATT: 150
United Kingdom	234, 235	T-Mobile: 030; BT: 076
Canada	302	Koodo: 220; Rogers: 720
Saudi Arabia	420	Mobily: 003
Brazil	724	Claro: 005; Vivo: 006
China	460	China Mobile: 002; China Telecom: 003
Test	001	TEST: 1

Table 2-1 GSM Network MCC/MNC Chart

(Source: Wikipedia,

en.wikipedia.org/wiki/Mobile_Country_Code_(MCC))

Base Station Hardware

- A normal cell phone could act as a base station with only a software change
- A phone in "engineering mode" could sniff radio traffic on all bands at the same time
- Packets can be logged via RS232
- You get voice and SMS traffic
- Flash phone via USB cable

Legal Warning

- This was all fantastically illegal, of course
- Wiretapping laws are scary
- We won't do illegal projects in this class
- I don't plan to do any rogue base station projects this semester

Hacking in 2002

- Rhode & Schwartz sold test gear for SMS networks, including BTS emulation
- Cost was six figures

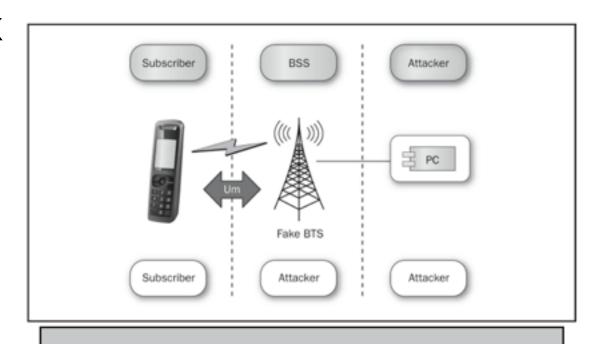


Figure 2-4 A simple GSM spoofing setup

Rogue Base Station Countermeasures

- It's up to the carriers to authenticate their networks
- There's nothing an end-user can do

Femtocell

- A device you can purchase
- Gives a stronger cell phone signal in your building
- Connects to your broadband
 Internet
 - Link Ch 2i

Rogue Femtocell Attacks

- OpenBTS: free software that can be used to make a fake base station for about \$1500 in 2009
- Femtocells are even simpler

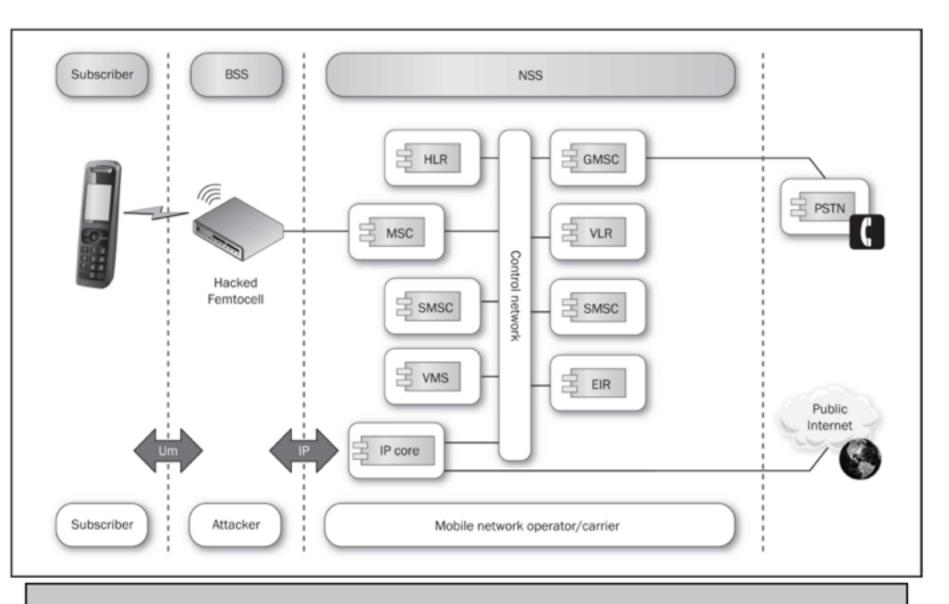


Figure 2-5 Rogue femtocell spoofing setup

Femtocell

- A tiny box with connectors for antenna, power, and Ethernet
- Generic Linux distribution running several specialized apps
- Loads a couple of drivers
- Includes some simple radios

Femtocell Functions

- Control signaling
 - Call setup and teardown and SMS messaging
- Converting normal voice calls into realtime protocol streams
- Associated SIP setup
- Backhaul link uses IPsec connections to special security gateways on the mobile network operator side

Information Disclosure

- Femtocells receive raw secrets used to authenticate devices from carriers
- They are encrypted in transit with IPsec, but they are present in the femtocell's software and hardware
 - Hacking AT&T Femtocell (link Ch 2g)
 - Hacking a Vodaphone Femtocell (link Ch 2h)

POKING AT THE FEMTOCELL HARDWARE IN AN AT&T MICROCELL

by: Mike Szczys

48 Comments

April 12, 2012

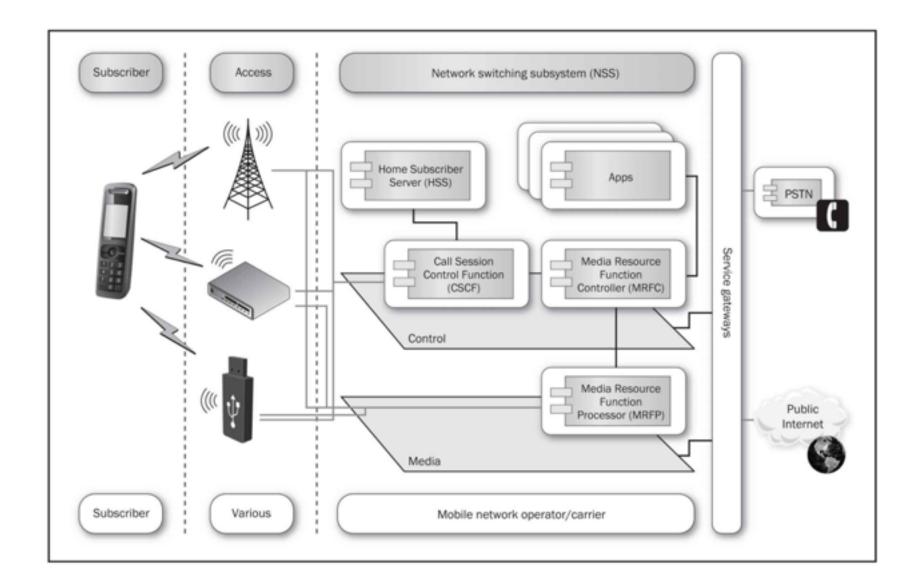
Femtocell Membership

- Carriers could limit membership to a few cell phones for a single femtocell
- But why not let everyone in? That expands their coverage for free!
- But it also means customers are using untrustworthy devices and they have no way to know that

Countermeasures for Rogue Femtocells

- Femtocells should be more limited in function
- Networks need to authenticate themselves to the handsets reliably
- SIP and IPsec allow for strong authentication
- We just need new standards that use them

The Brave New World of IP


IMS (IP Multimedia Subsystem)

- Carriers are moving to an IP-only system
- No more
 - Packetized voice
 - Loss of data service while on a phone call
 - Low-speed data links
- Everything will use a baseband that connects to a high-speed IP network

Changes to Services

- Voice calls become Real-time Transport Protocol (RTP) streams delivered via UDP.
- SMS and MMS messages become Short Message Peer-to-Peer (SMPP) interactions.
- Control channels become SSL- or IPSec-protected
 TCP endpoints on your phone.

IMS Architecture

Long-Term Evolution (LTE)

- Devices connect via IP networks to services, protected by gateways
- As networks move from GSM or CDMA to LTE, these changes occur:
 - Unified bearer protocol-IP
 - IMS network can service any IP client, including PC, laptop, tablet, smartphone
 - All these devices could interoperate and replace one another, someday