CNIT 127: Exploit Development

Ch 1: Before you begin

The

Shellcoders
"“"""“’"“"”:ul(ll)m)k

Updated 1-14-16

Basic Concepts

Vulnerability

« A flaw in a system that allows an attacker
to do something the designer did not

intend, such as

— Denial of service (loss of availability)

— Elevating privileges (e.g. user to
Administrator)

— Remote Code Execution (typically a remote
shell)

Exploit

» Exploit (v.)
— To take advantage of a vulnerability and
cause a result the designer did not intend

« Exploit (n.)
— The code that is used to take advantage of a
vulnerability
— Also called a Proof of Concept (PoC)

ODay and Fuzzer

* ODay
— An exploit that has not been publicly
disclosed
— Sometimes used to refer to the vulnerability
itself

* Fuzzer
— A tool that sends a large range of unexpected
input values to a system
— The purpose is to find bugs which could later
be exploited

Memory Management

» Specifically for Intel 32-bit architecture

* Most exploits we'll use involve
overwriting or overflowing one portion of
memory into another

* Understanding memory management is
therefore crucial

Instructions and Data

« There is no intrinsic difference between

data and executable instructions
— Although there are some defenses like Data
Execution Prevention

* They are both just a series of bytes

* This ambiguity makes system exploitation
possible

Program Address Space

» Created when a program is run, including
— Actual program instructions
— Required data

* Three types of segments
— .text contains program instructions (read-
only)
— .data contains static initialized global
variables (writable)
— .bss contains uninitialized global variables
(writable)

Stack

Last In First Out (LIFO)

Most recently pushed data is the first popped

|ldeal for storing transitory information

— Local variables

— Information relating to function calls

— Other information used to clean up the stack
after a function is called

Grows down
— As more data is added, it uses lower address
values

Heap

» Holds dynamic variables
* Roughly First In First Out (FIFO)
* Grows up in address space

Program Layout in RAM

f Kernel space

168 < User code CANNOT read from nor write to these addresses
|.) doing so results in a Mexcmee = TASK_SIZE

} Random stack offset

Stack (grows down)
> RLIMIT_STACK (e.g., 8MB)

F Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /1ib/libc.so

progran break

T:r brk

Heap start_brk
\
J

G

» Random brk offset

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment end_data
Static variables initialized by the programmer.
Example: static char *gonzo = "God’s own prototype”; start data

Text segment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) |, agassess
e

* From link Ch 1a (.bss = Block Started by Symbols)

Assembly

Assembly Language

Different versions for each type of
processor

x86 - 32-bit Intel (most common)
Xx64 - 64-bit Intel

SPARC, PowerPC, MIPS, ARM - others
Windows runs on x86 or x64

Xx64 machines can run x86 programs
Most malware is designed for x86

Instructions

Mnemonic followed by operands

mov ecx 0x42

— Move into Extended C register the value 42
(hex)

mov ecx is 0xB9 in hexadecimal
The value 42 is 0x4200000000
In binary this instruction is
0xB942000000

Endianness

Big-Endian
— Most significant byte first
— 0x42 as a 64-bit value would be 0x00000042

Little-Endian
— Least significant byte first
— 0x42 as a 64-bit value would be 0x42000000

Network data uses big-endian
x86 programs use little-endian

IP Addresses

« 127.0.0.1, or in hex, 7F 00 00 O1
 Sent over the network as Ox7F000001
o Stored in RAM as 0x0100007F

Operands

 Immediate
— Fixed values like 0x42
* Register
— eax, ebx, ecx, and so on

 Memory address
— Denoted with brackets, like [eax]

Registers

Table 5-3. The x86 Registers

General registers Segment registers Status register Instruction pointer

EAX (AX, AH, AL) CS EFLAGS

EBX (BX, BH, BL) SS

ECX (CX,CH, CL) DS

EDX (DX, DH, DL) ES

EBP (BP) FS

ESP (SP) GS

ESI (SI)

EIP

Registers

General registers
— Used by the CPU during execution

Segment registers
— Used to track sections of memory

Status flags
— Used to make decisions

Instruction pointer
— Address of next instruction to execute

Size of Registers

* General registers are all 32 bits in size

— Can be referenced as either 32bits (edx) or 16
bits (dx)

* Four registers (eax, ebx, ecx, edx) can

also be referenced as 8-bit values
— AL is lowest 8 bits
— AH is higher 8 bits

32 bits

EAX

1010 1001 1101 1100 1000 OOO1 1111 0101
A Q D & 8 | F 5
AX
. 1000 0001 1111 0101
16 bits 3 | : 5
AH Al
. 1000 0001 (|| 1111 O101
8b|f$ 8] F 5

Figure 5-4. x86 EAX register breakdown

Binary
Hex

General Registers

Typically store data or memory addresses
Normally interchangeable

Some instructions reference specific

registers
— Multiplication and division use EAX and EDX

Conventions

— Compilers use registers in consistent ways

— EAX contains the return value for function
calls

Flags

EFLAGS is a status register
32 bits in size

Each bit is a flag

SET (1) or Cleared (0)

Important Flags

LF Zero flag
— Set when the result of an operation is zero

CF Carry flag
— Set when result is too large or small for
destination

SF Sign Flag

— Set when result is negative, or when most
significant bit is set after arithmetic

TF Trap Flag

— Used for debugging—if set, processor executes
only one instruction at a time

EIP (Extended Instruction Pointer)

Contains the memory address of the next
instruction to be executed

If EIP contains wrong data, the CPU will

fetch non-legitimate instructions and
crash

» Buffer overflows target EIP

Simple Instructions

Simple Instructions

* mov destination, source
— Moves data from one location to another

* Intel format is favored by Windows
developers, with destination first

PUSH EBP pushl %ebp

MOV EBP, ESP movl %esp, %ebp
SUB ESP, 48 subl $0x48, %esp
tomm——————————— tomm— e —————————— +

Table 1. AT&T format data assignment direction.

Simple Instructions

 Remember indirect addressing

— [ebx] means the memory location pointed to
by EBX

Table 5-4. mov Instruction Examples

Instruction

Description

mov eax, ebx

mov eax,
Ox42

mov eax,
[0x4037C4]

mov eax,
[ebx]

mov eax,
[ebx+esi*4]

Copies the contents of EBX into the EAX register

Copies the value 0x42 into the EAX register

Copies the 4 bytes at the memory location 0x4037C4 into the EAX
register

Copies the 4 bytes at the memory location specified by the EBX register
into the EAX register

Copies the 4 bytes at the memory location specified by the result of the
equation ebx+esi*4 into the EAX register

lea (Load Effective Address)

 lea destination, source

* lea eax, [ebx+8]
— Puts ebx + 8 into eax

 Compare
— mov eax, [ebx+8]
— Moves the data at location ebx+8 into eax

Figure 5-5 shows values for registers EAX and EBX on the left and the
information contained in memory on the right. EBX is set to 0xB30040.
At address 0xB30048 is the value 0x20. The instruction mov eax,
[ebx+8] places the value 0x20 (obtained from memory) into EAX, and
the instruction lea eax, [ebx+8] places the value 0xB30048 into EAX.

Registers Memory
EAX = 0x00000000 /OXOOBBOOAO 0x00000000
EBX = 0x00B30040 - 0x00B30044 Ox63676862

Ox00B30048 0x00000020
O0x00B3004C Ox41414141

Figure 5-5. EBX register used to access memory

Arithmetic

sub Subtracts
add Adds

inc Increments
dec Decrements
mul Multiplies
div Divides

NOP

Does nothing
0x90
Commonly used as a NOP Sled

Allows attackers to run code even if they
are imprecise about jumping to it

The Stack

Memory for functions, local variables, and
flow control

Last in, First out
ESP (Extended Stack Pointer) - top of stack

EBP (Extended Base Pointer) - bottom of
stack

PUSH puts data on the stack
POP takes data off the stack

Other Stack Instructions

« All used with functions
— Call
— Leave
— Enter
— Ret

Function Calls

* Small programs that do one thing and
return, like printf()

* Prologue

— Instructions at the start of a function that

prepare stack and registers for the function
to use

» Epilogue
— Instructions at the end of a function that

restore the stack and registers to their state
before the function was called

The stack grows
up toward O

Low Memory Address

Current Stack Frame

Caller’s Stack Frame

Caller's Caller’s Stack Frame

High Memory Address

Figure 5-7. x86 stack layout

low Memory Address

Current Stack Frame

Caller's Stack Frame

Caller's Caller’s Stack Frame

High Memory Address

ESP

EBP —

Local Variable N

Local Variable 1

Local Variable 2

Old EBP

Return Address

Argument |

Argument 2

Argument N

Figure 5-8. Individual stack frame

0012F000
0012F004
0012F008
0012F00C
0012F010
0012F014
0012F018
0012F01C
0012F020
0012F024
0012F028
0012F02C
0012F030
0012F034
0012F038
0012F03C
0012F040
0012F044
0012F048
0012F04C
0012F050

Conditionals

e test
— Compares two values the way AND does, but
does not alter them

— test eax, eax
 Sets Zero Flag if eax is zero

* Ccmp eax, ebx
— Sets Zero Flag if the arguments are equal

Branching

* jz loc
— Jump to loc if the Zero Flag is set

* jnz loc
— Jump to loc if the Zero Flag is cleared

C Main Method

» Every C program has a main() function

 int main(int argc, char** argv)
— argc contains the number of arguments on
the command line
—argyv is a pointer to an array of names
containing the arguments

cp foo bar
argc = 3
argv[0] = cp
argv[1] = foo
argv([2] = bar

Example

Recognizing C Constructs in
Assembly

C

Incrementing

int number;

number++;

Assembler
number dw O

mov eax, number

inc eax
mov number, eax

dw: Define Word

Incrementing

C Assembler
int number; number dw 0
1f (number<0) mov eax, number
{ Oor eax, eax
c e jge label
} .« e
label :

*Or compares numbers,
like test (link Ch 1b)

Array

C Assembler
int array[4]; array dw 0,0,0,0
array[2]=9; mov ebx, 2

mov array[ebx], 9

C

Triangle

int triangle (int
width, int height)
{

int array[5] =
{011121314};

int area

area = width *
height/2;

return (area);

}

push
pus
pus

~“l

-

——
»

oS
50x30, $esp
Oxffffffd8 (%ebp), %ed1
S0x8049508, sesi

es)
.....

