
CNIT 127: Exploit Development  
 

Ch 1: Before you begin

Updated 1-14-16

Basic Concepts

Vulnerability

• A flaw in a system that allows an attacker
to do something the designer did not
intend, such as
– Denial of service (loss of availability)
– Elevating privileges (e.g. user to

Administrator)
– Remote Code Execution (typically a remote

shell)

Exploit

• Exploit (v.)
– To take advantage of a vulnerability and

cause a result the designer did not intend

• Exploit (n.)
– The code that is used to take advantage of a

vulnerability
– Also called a Proof of Concept (PoC)

0Day and Fuzzer

• 0Day
– An exploit that has not been publicly

disclosed
– Sometimes used to refer to the vulnerability

itself

• Fuzzer
– A tool that sends a large range of unexpected

input values to a system
– The purpose is to find bugs which could later

be exploited

Memory Management

• Specifically for Intel 32-bit architecture
• Most exploits we'll use involve

overwriting or overflowing one portion of
memory into another

• Understanding memory management is
therefore crucial

Instructions and Data

• There is no intrinsic difference between
data and executable instructions
– Although there are some defenses like Data

Execution Prevention

• They are both just a series of bytes
• This ambiguity makes system exploitation

possible

Program Address Space

• Created when a program is run, including
– Actual program instructions
– Required data

• Three types of segments
– .text contains program instructions (read-

only)
– .data contains static initialized global

variables (writable)
– .bss contains uninitialized global variables

(writable)

Stack

• Last In First Out (LIFO)
• Most recently pushed data is the first popped
• Ideal for storing transitory information

– Local variables
– Information relating to function calls
– Other information used to clean up the stack

after a function is called

• Grows down
– As more data is added, it uses lower address

values

Heap

• Holds dynamic variables
• Roughly First In First Out (FIFO)
• Grows up in address space

Program Layout in RAM

• From link Ch 1a (.bss = Block Started by Symbols)

Assembly

Assembly Language

• Different versions for each type of
processor

• x86 – 32-bit Intel (most common)
• x64 – 64-bit Intel
• SPARC, PowerPC, MIPS, ARM – others
• Windows runs on x86 or x64
• x64 machines can run x86 programs
• Most malware is designed for x86

Instructions

• Mnemonic followed by operands
• mov ecx 0x42

– Move into Extended C register the value 42
(hex)

• mov ecx is 0xB9 in hexadecimal
• The value 42 is 0x4200000000
• In binary this instruction is
• 0xB942000000

Endianness

• Big-Endian
– Most significant byte first
– 0x42 as a 64-bit value would be 0x00000042

• Little-Endian
– Least significant byte first
– 0x42 as a 64-bit value would be 0x42000000

• Network data uses big-endian
• x86 programs use little-endian

IP Addresses

• 127.0.0.1, or in hex, 7F 00 00 01
• Sent over the network as 0x7F000001
• Stored in RAM as 0x0100007F

Operands

• Immediate
– Fixed values like 0x42

• Register
– eax, ebx, ecx, and so on

• Memory address
– Denoted with brackets, like [eax]

Registers

Registers

• General registers
– Used by the CPU during execution

• Segment registers
– Used to track sections of memory

• Status flags
– Used to make decisions

• Instruction pointer
– Address of next instruction to execute

Size of Registers

• General registers are all 32 bits in size
– Can be referenced as either 32bits (edx) or 16

bits (dx)

• Four registers (eax, ebx, ecx, edx) can
also be referenced as 8-bit values
– AL is lowest 8 bits
– AH is higher 8 bits

General Registers

• Typically store data or memory addresses
• Normally interchangeable
• Some instructions reference specific

registers
– Multiplication and division use EAX and EDX

• Conventions
– Compilers use registers in consistent ways
– EAX contains the return value for function

calls

Flags

• EFLAGS is a status register
• 32 bits in size
• Each bit is a flag
• SET (1) or Cleared (0)

Important Flags

• ZF Zero flag
– Set when the result of an operation is zero

• CF Carry flag
– Set when result is too large or small for

destination
• SF Sign Flag

– Set when result is negative, or when most
significant bit is set after arithmetic

• TF Trap Flag
– Used for debugging—if set, processor executes

only one instruction at a time

EIP (Extended Instruction Pointer)

• Contains the memory address of the next
instruction to be executed

• If EIP contains wrong data, the CPU will
fetch non-legitimate instructions and
crash

• Buffer overflows target EIP

Simple Instructions

Simple Instructions

• mov destination, source
– Moves data from one location to another

• Intel format is favored by Windows
developers, with destination first

Simple Instructions

• Remember indirect addressing
– [ebx] means the memory location pointed to

by EBX

lea (Load Effective Address)

• lea destination, source
• lea eax, [ebx+8]

– Puts ebx + 8 into eax

• Compare
– mov eax, [ebx+8]
– Moves the data at location ebx+8 into eax

Arithmetic

• sub Subtracts
• add Adds
• inc Increments
• dec Decrements
• mul Multiplies
• div Divides

NOP

• Does nothing
• 0x90
• Commonly used as a NOP Sled
• Allows attackers to run code even if they

are imprecise about jumping to it

The Stack

• Memory for functions, local variables, and
flow control

• Last in, First out
• ESP (Extended Stack Pointer) – top of stack
• EBP (Extended Base Pointer) – bottom of

stack
• PUSH puts data on the stack
• POP takes data off the stack

Other Stack Instructions

• All used with functions
– Call
– Leave
– Enter
– Ret

Function Calls

• Small programs that do one thing and
return, like printf()

• Prologue
– Instructions at the start of a function that

prepare stack and registers for the function
to use

• Epilogue
– Instructions at the end of a function that

restore the stack and registers to their state
before the function was called

Conditionals

• test
– Compares two values the way AND does, but

does not alter them
– test eax, eax

• Sets Zero Flag if eax is zero

• cmp eax, ebx
– Sets Zero Flag if the arguments are equal

Branching

• jz loc
– Jump to loc if the Zero Flag is set

• jnz loc
– Jump to loc if the Zero Flag is cleared

C Main Method

• Every C program has a main() function
• int main(int argc, char** argv)

– argc contains the number of arguments on
the command line

– argv is a pointer to an array of names
containing the arguments

Example

• cp foo bar
• argc = 3
• argv[0] = cp
• argv[1] = foo
• argv[2] = bar

Recognizing C Constructs in
Assembly

Incrementing

C
int number;
...
number++;

Assembler
number dw 0
...
mov eax, number
inc eax
mov number, eax

•dw: Define Word

Incrementing

C
int number;
if (number<0)
{
...
}

Assembler
number dw 0
mov eax, number
or eax, eax
jge label
...
label :

•or compares numbers,
like test (link Ch 1b)

Array

C
int array[4];
...
array[2]=9;

Assembler
array dw 0,0,0,0
...
mov ebx, 2
mov array[ebx], 9

Triangle

C
int triangle (int
width, int height)
{
int array[5] =
{0,1,2,3,4};
int area
area = width *
height/2;
return (area);
}

