CNIT 127: Exploit Development
Ch 8: Windows Overflows
Part 2

The

Shelle ()(|(‘l S
"Handbook

Topics

» Stack Protection
» Heap-Based Buffer Overflows
* Other Overflows

Stack Protection

Windows Stack Protections

* Microsoft Visual C++ .NET provides
— /GS compiler flag is on by default

— Tells compiler to place security cookies on
the stack to guard the saved return address

— Equivalent of a canary

— 4-byte value (dword) placed on the stack after
a procedure call

— Checked before procedure return
— Protects saved return address and EBP

Stack Protected by a Security Cookie

name[20]

Other variables

Security Cookie

Saved EBP

How is the Cookie Generated?

 When a process starts, Windows combines
these values with XOR

— DateTime (a 64-bit integer counting time
intervals of 100 nanoseconds)

— Process ID
— Thread ID

— TickCount (number of milliseconds since the
system started up)

— Performance Counter (number of CPU cycles)

Predicting the Cookie

 If an attacker can run a process on the
target to get system time values

* Some bits of the cookie can be predicted

Effectively 17 bits of Randomness

Adeandoy Juaouag

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 O

Bit position: Cookie

How Good is 17 Bits?

« 2°17 =131,072

 So an attacker would have to run an
attack 100,000 times or so to win by
guessing the cookie

Prologue Modification

» _ security_cookie value placed in the
stack at a carefully calculated position

* To protect the EBP and Return value
— From link Ch 8m

.text :0040214B mov eax, __security_cookie
.text :00402150 xor eax, ebp
.text:00402152 mov [ebp+2A8h+var_4], eax

Epilogue Modification

» Epilogue to a function now includes these

instructions
— From link Ch 8m

.text :00402223 mov ecx, [ebp+2A8h+var_4]
.text :00402229 Xor ecx, ebp
.text :0040222B pop esi

.text :0040222C call __security_check_cookie

__security_check_cookie

e Current cookie value is in ecx

« Compared to authoritative value stored in
the .data section of the image file of the
procedure

 |f the check fails, it calls a security handler,
using a pointer stored in the .data section

.text :0040634B cmp ecx, __security_cookie
.text :00406351 jnz short loc_406355
.text :00406353 rep retn

.text :00406355 loc_406355:
.text :00406355 jmp __report_gsfailure

Parameter Order

* Before Windows Server 2003, local
variables were placed on the stack in the
order of their declaration in the C++ source

code

* Now all arrays are moved to the bottom of
the list, closest to the saved return address

* This prevents buffer overflows in the
arrays from changing the non-array
variables

Long password becomes Cannot overwrite
admin is_admin

| Security Cookie | | Security Cookie |

Overwriting Parameters

Figure 8-3: Before and after snapshots of the buffer

Buffer

Buffer

Cookie

Saved EBP

Cookie

Saved Return
Address

Saved EBP

Param 1

Saved Return
Address

Param 2

Param 1

BEFORE

Param 2

AFTER

Overwriting Parameters

* We've changed the cookie, but if the
parameters are used in a write operation
before the function returns, we could

— Overwrite the authoritative cookie value in
the .data section, so the cookie check passes

— Overwrite the handler pointer to the security
handler, and let the cookie check fail

« Handler could point to injected code

* Or set handler to zero and overwrite the default
exception handler value

Heap-Based Buffer Overflows

Purpose of the Heap

Consider a Web server

HTTP requests vary in length

May vary from 20 to 20,000 bytes or
longer (in principle)

Once processed, the request can be
discarded, freeing memory for re-use

For efficiency, such data is best stored on
the heap

The Process Heap

* Every process running on Win32 has a
process heap

* The C function GetProcessHeap() returns a
handle to the process heap

» A pointer to the process heap is also
stored in the Process Environment Block

The Process Heap

* This code returns that pointer in eax

mov eax, dword ptr fs:

[0x30]
mov eax, dword ptr[eax+0x18

]

* Many of the underlying functions of the
Windows API use this default process heap

Dynamic Heaps

» A process can create as many dynamic
heaps as required

 All inside the default process heap
* Created with the HeapCreate() function

' PEB

Default Heap (0x10)

Heap Count (0x80)

Heap List (0x90)

J

h 4

>

Default Heap

v
0x003.. .
0x002.. Dyvnamic Heap
(274 Heap)

e From link Ch 80

Working with the Heap

» Application uses HeapAllocate() to borrow
a chunk of memory on the heap

— Legacy functions left from Win16 are
LocalAlloc() & GlobalAlloc(), but they do the
same thing—there's no difference in Win32

* When the application is done with the
memory, if calls HeapFree()

— Or LocalFree() or GlobalFree()

How the Heap Works

* The stack grows downwards, towards
address 0x00000000

* The heap grows upwards

* Heap starts with 128 LIST_ENTRY
structures that keep track of free blocks

Vulnerable Heap Operations

 When a chunk is freed, forward and
backward pointers must be updated

* This enables us to control a write
operation, to write to arbitrary RAM
locations
— Image from mathyvanhoef.com, link Ch 5b

Details

* There is a lot more to it, involving these

structures

— Segment list

— Virtual Allocation list
— Free list

— Lookaside list

* For details, see link Ch8o

Exploiting Heap-Based Overflows:
Three Techniques

* Overwrite the pointer to the exception

handler

* Overwrite the pointer to the Unhandled

Exception Fi
 OQverwrite a

ter

hointer in the PEB

Overwrite a Pointer in th

RtlEnterCriticalSection, called by
RtlAcquirePeblLock() and RtlRelease

e PEB

Peblock()

Called whenever a process exits wit
ExitProcess()

PEB location is fixed for all versions
NT

N

of Win

Your code should restore this pointer, and
you may also need to repair the heap

Win 2003 Server

* Does not use these pointers in the PEB

 But there are Ldr* functions that call

pointers we can control
— Including LdrUnloadDlL()

Vectored Exception Handling

Introduced with Windows XP

Traditional frame-based exception
handling stores exception registration
records on the stack

Vectored exception handling stores
information about handlers on the heap

A heap overflow can change them

Overwrite a Pointer to the Unhandled
Exception Filter

 First proposed at Blackhat Amsterdam
(2001)

* An application can set this value using

SetUnhandledExceptionFilter()
— Disassemble that function to find the pointer

7TTETESAL mov ecx,dword ptr [esp+4]
7TETESAS mov eax, [77ED73B4]

TTETESAA mov dword ptr ds:[77ED73B4h],ecx
TTETESBO ret 4

Repairing the Heap

* The overflow corrupts the heap

» Shellcode will probably cause an access
violation

* Simplest repair process is to just make the
heap look like a fresh, empty heap

— With the one block we are using on it

Restore the Exception Handler you
Abused

« Otherwise, you could create an endless
loop

* If your shellcode causes an exception

COM Objects and the Heap

 Component Object Model (COM) Objects
— An object that can be created when needed
by another program
— It has methods that can be called to perform
a task
— It also has attributes (stored data)

 COM objects are created on the heap

Vtable in Heap

* All COM classes
have one or more
interfaces, which
are used to connect

them to a program
— Figure from link Ch

3p

pointer to interface

> Interface

pointer to vtable

vtable

method pointer

method pointer

method pointer

method pointer

method pointer

COM Objects Contain Data

* If the programmer doesn't check, these
data fields could be overflowed, into the

next object’s vtable
— Image from link Ch 8q

§ MSVidAnalogTunerDevice

(-] IMSVidAnalogTuner2
e Channel
».-..Channel Available

Pii N
IPersistStream::Save() DWORD Header
™ BYTE VT 14
DWORD Channel
BYTE VT 14
i DWORD CountryCode

IPersistStream::Load()

ﬁ

COM Background - Management
» Average Windows install will have 1000’s of COM Objects

= Current killbit list has over 600 entries

= Many libraries contain multiple COM objects

* Vunerable COM objects are often not fixed
» Just added to the “killbit" list

 Which can be circumvented

* From link Ch 8qq; Image on next slide from link
Ch 8r

OLEACL]
File Object View Help
B3] A %])
£ (@) Object Classes Grouped by Component Category
(=8| Grouped by Component Category Al HKEY_CLASSES_ROOT \Componert Categones Entries
&) NET Category Regstry I
&) 30 DwectTransform
&) Active Scripting Engine Compenent Categorees
&) Active Scripting Engine with Ax {00000003-0000-0000-COM0-000000000046 } [409] = Trusted Custom Marshalers
&) Active Scripting Engine with Er (000214900000 -0000- COM0-000000000046 } [409] = Browsable Shell Extension
&) Active Scripting Engine with Pt [000.21492-0000-0000- COM-000000000046 | (409] = Desk Band
&) Automation Objects {00021 493-0000-0000- CO00-000000000045) [409] = Internet Explorer Browser Band
&) Browsable Shell Extension {DAEE2AS2-BCBE-11D0-8C72-00C04FC2B08S} [409] = Active Scripting Engine with Autharing
&) Class smplernents PersatFile [ODEBSASO-2BAA-11CF-A229-00AA003D7352) (409) = Class requires the ability to save data to one or more paths
&) Class implernents PersutMem [DOEB6AS]1 - 2BAA-11CF-A229-00AA00307352) [409] = Class implernents IPersstMondker
&) Clazs implements IPersistMoni {0DEB5A52-2BAA-11 CF-A229-00AA00307352] [409] = Class implemnents IPersstStorage
&) Class implements PersstPrope {ODEBSAS3-2BAA-11CF-A229-00AA003D7352) [405] » Class implements IPersistStreaminit
) Class smplernents IPersnstStora [ODEBEASE-2BAA-11CF-A229-00AA003D7352) [408) = Class implements IPersistStream
&) Class implermnents IPersutStrear [DOEB6ASS-2BAA-11 CF-A229-00AA0307352] [409] = Class smplemnents IPersstMemory
&) Class implements IPersistStres: [0DEBSAS6-2BAA-11CF-A229-00AA003D7352] [409] = Class implements IPersistFile
&) Class requires the ability to sav (ODEBSAST-2BAA-11CF-A229-00AA00307352) [405] = Class implements IPersistPropertyBag
&l Cortrols (217d378¢-1344-417- 0444 7cTT0AT 4734) [405) = MediaCenterinputModule
&) Controls safely nitializable fror [40FCHED3-2433-11CF-ASDB-080036F12502] (409] = Embeddable Objects
&) Controls that are safely scriptal {40FCHED3-2438-11CF-A3DB-080036F12502] (800] = Insertable
&) Cpq QuckCheck Compenents (40FCHEDE-2433-11CF-A3DB-080036F12502) [405] = Controls
&) Cpq Service [40FCSEDS-2433-11CF-A3DB-080036F12502) (800] = Control
&) Desk Band [40FCHEDS-2433-11CF-ASDB-080036F12502] [409] = Automaticn Objects
&) Document Objects {40FCHEDS-2438-11CF-A3DB-080036F12502] [405] » Document Objects
&) DXTransform Authorng Versio [40FCEEDS-2438-11CF-A3DB-080036F12502) [405) = _Printable Objects
&) Embeddable Objects [62CBFELS-4EBB-45¢7-B440-6E3982C0BF29) 10) = NET Category
&) Image DirectTransform [73748140-977C-11CF-9FAS-00 AADOSCA2CA)
&) Internet Explorer Browser Band 405 » Controls that are safely scriptable
&) Media Status Sink [73748142-977C-11CF-OFAS-00AAD0ECA2C4)
8] MediaCenterdnputModule 409 = Controls safely initalizable from persatent data
&) SQL Server Conflict Resolvers [70095801-9852-11 CF-9FAS-00AAO6CA2C4] [09] = Controls that are safely scriptable
% &) Trusted Custom Marshalers {70095802-9852-11CF-9FAS-D0AADGCA2C4 | [809] = Controls safely mnitialzable from persistent data
@ OLE 1) Objects (BSBAOTT4-DCE1-4EE1-B3C2-FIEECHBLERAS) (408] = Cpg QuickCheck Components
® P COM Libeary Objects [ACACHFC-ESCF-1101-9066-00C04FDI189D) [409] = DXTransform Authoring Verssons
© @ All Objects {C09807CE-3B99-413F-9364- AAEFTDCFDECS) [409] = SQU Server Conflict Resolvers
(&) Apphcatson IDs (CS01EDBE-9E70-1101-5052-00C04FD91850} [409] = Image DirectTransform
@) Type Libracies (CS01EDBF-9E20-1101-9053-00C04F091850) [409] = 3D DwrectTransform
(1) Interfaces [E7CFOM60-8785-1102-B1F8-8604FBOSST2F) [409] = Cpq Service
[FOB7A1A1-9847-11CF-8F20-00805F2CD0G4 | [409] » Active Scripting Engine
(FOBTA1A2-5847-11CF-8F20.00805F2C D064 [408) = Active Scripting Engine with Parsing

o

&8
®
®
®
2
®
®
®
&
@
®
2
®
®
2
®
®
®
®

Other Overflows

Overflows in the .data Section

#include <stdio.h>
#include <windows.h>

unsigned char buffer[32]="";
FARPROC mprintf = 0;
FARPROC mstrcpy = 0;

int main(int argc, char *argv|[])

{

 |f a buffer is placed before function pointers in
the .data section

* Overflowing the buffer can change the pointers

TEB/PEB Overflows

* In principle, buffers in the TEB used for
converting ASCII to Unicode could be

overflowed
* Changing pointers

* There are no public examples of this type
of exploit

