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Stack Protection



Windows Stack Protections

* Microsoft Visual C++ .NET provides
— /GS compiler flag is on by default

— Tells compiler to place security cookies on
the stack to guard the saved return address

— Equivalent of a canary

— 4-byte value (dword) placed on the stack after
a procedure call

— Checked before procedure return
— Protects saved return address and EBP



Stack Protected by a Security Cookie
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How is the Cookie Generated?

 When a process starts, Windows combines
these values with XOR

— DateTime (a 64-bit integer counting time
intervals of 100 nanoseconds)

— Process ID
— Thread ID

— TickCount (number of milliseconds since the
system started up)

— Performance Counter (number of CPU cycles)



Predicting the Cookie

 If an attacker can run a process on the
target to get system time values

* Some bits of the cookie can be predicted



Effectively 17 bits of Randomness
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How Good is 17 Bits?

« 2°17 =131,072

 So an attacker would have to run an
attack 100,000 times or so to win by
guessing the cookie



Prologue Modification

» _ security_cookie value placed in the
stack at a carefully calculated position

* To protect the EBP and Return value
— From link Ch 8m

.text :0040214B mov eax, __security_cookie
.text :00402150 xor eax, ebp
.text:00402152 mov [ebp+2A8h+var_4], eax




Epilogue Modification

» Epilogue to a function now includes these

instructions
— From link Ch 8m

.text :00402223 mov ecx, [ebp+2A8h+var_4]
.text :00402229 Xor ecx, ebp
.text :0040222B pop esi

.text :0040222C call __security_check_cookie




__security_check_cookie

e Current cookie value is in ecx

« Compared to authoritative value stored in
the .data section of the image file of the
procedure

 |f the check fails, it calls a security handler,
using a pointer stored in the .data section

.text :0040634B cmp ecx, __security_cookie
.text :00406351 jnz short loc_406355
.text :00406353 rep retn

.text :00406355 loc_406355:
.text :00406355 jmp __report_gsfailure




Parameter Order

* Before Windows Server 2003, local
variables were placed on the stack in the
order of their declaration in the C++ source

code

* Now all arrays are moved to the bottom of
the list, closest to the saved return address

* This prevents buffer overflows in the
arrays from changing the non-array
variables



Long password becomes Cannot overwrite
admin is_admin

| Security Cookie | | Security Cookie |




Overwriting Parameters

Figure 8-3: Before and after snapshots of the buffer
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Overwriting Parameters

* We've changed the cookie, but if the
parameters are used in a write operation
before the function returns, we could

— Overwrite the authoritative cookie value in
the .data section, so the cookie check passes

— Overwrite the handler pointer to the security
handler, and let the cookie check fail

« Handler could point to injected code

* Or set handler to zero and overwrite the default
exception handler value



Heap-Based Buffer Overflows



Purpose of the Heap

Consider a Web server

HTTP requests vary in length

May vary from 20 to 20,000 bytes or
longer (in principle)

Once processed, the request can be
discarded, freeing memory for re-use

For efficiency, such data is best stored on
the heap



The Process Heap

* Every process running on Win32 has a
process heap

* The C function GetProcessHeap() returns a
handle to the process heap

» A pointer to the process heap is also
stored in the Process Environment Block



The Process Heap

* This code returns that pointer in eax

mov eax, dword ptr fs:

[0x30]
mov eax, dword ptr[eax+0x18

]

* Many of the underlying functions of the
Windows API use this default process heap



Dynamic Heaps

» A process can create as many dynamic
heaps as required

 All inside the default process heap
* Created with the HeapCreate() function
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Working with the Heap

» Application uses HeapAllocate() to borrow
a chunk of memory on the heap

— Legacy functions left from Win16 are
LocalAlloc() & GlobalAlloc(), but they do the
same thing—there's no difference in Win32

* When the application is done with the
memory, if calls HeapFree()

— Or LocalFree() or GlobalFree()



How the Heap Works

* The stack grows downwards, towards
address 0x00000000

* The heap grows upwards

* Heap starts with 128 LIST_ENTRY
structures that keep track of free blocks



Vulnerable Heap Operations

 When a chunk is freed, forward and
backward pointers must be updated

* This enables us to control a write
operation, to write to arbitrary RAM
locations
— Image from mathyvanhoef.com, link Ch 5b




Details

* There is a lot more to it, involving these

structures

— Segment list

— Virtual Allocation list
— Free list

— Lookaside list

* For details, see link Ch8o



Exploiting Heap-Based Overflows:
Three Techniques

* Overwrite the pointer to the exception

handler

* Overwrite the pointer to the Unhandled

Exception Fi
 OQverwrite a

ter

hointer in the PEB



Overwrite a Pointer in th

RtlEnterCriticalSection, called by
RtlAcquirePeblLock() and RtlRelease

e PEB

Peblock()

Called whenever a process exits wit
ExitProcess()

PEB location is fixed for all versions
NT

N

of Win

Your code should restore this pointer, and
you may also need to repair the heap



Win 2003 Server

* Does not use these pointers in the PEB

 But there are Ldr* functions that call

pointers we can control
— Including LdrUnloadDlL()



Vectored Exception Handling

Introduced with Windows XP

Traditional frame-based exception
handling stores exception registration
records on the stack

Vectored exception handling stores
information about handlers on the heap

A heap overflow can change them



Overwrite a Pointer to the Unhandled
Exception Filter

 First proposed at Blackhat Amsterdam
(2001)

* An application can set this value using

SetUnhandledExceptionFilter()
— Disassemble that function to find the pointer

7TTETESAL mov ecx,dword ptr [esp+4]
7TETESAS mov eax, [77ED73B4]

TTETESAA mov dword ptr ds:[77ED73B4h],ecx
TTETESBO ret 4




Repairing the Heap

* The overflow corrupts the heap

» Shellcode will probably cause an access
violation

* Simplest repair process is to just make the
heap look like a fresh, empty heap

— With the one block we are using on it



Restore the Exception Handler you
Abused

« Otherwise, you could create an endless
loop

* If your shellcode causes an exception



COM Objects and the Heap

 Component Object Model (COM) Objects
— An object that can be created when needed
by another program
— It has methods that can be called to perform
a task
— It also has attributes (stored data)

 COM objects are created on the heap



Vtable in Heap

* All COM classes
have one or more
interfaces, which
are used to connect

them to a program
— Figure from link Ch

3p
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COM Objects Contain Data

* If the programmer doesn't check, these
data fields could be overflowed, into the

next object’s vtable
— Image from link Ch 8q
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COM Background - Management
» Average Windows install will have 1000’s of COM Objects

= Current killbit list has over 600 entries

= Many libraries contain multiple COM objects

* Vunerable COM objects are often not fixed
» Just added to the “killbit" list

 Which can be circumvented

* From link Ch 8qq; Image on next slide from link
Ch 8r
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Other Overflows



Overflows in the .data Section

#include <stdio.h>
#include <windows.h>

unsigned char buffer[32]="";
FARPROC mprintf = 0;
FARPROC mstrcpy = 0;

int main(int argc, char *argv|[])

{

 |f a buffer is placed before function pointers in
the .data section

* Overflowing the buffer can change the pointers



TEB/PEB Overflows

* In principle, buffers in the TEB used for
converting ASCII to Unicode could be

overflowed
* Changing pointers

* There are no public examples of this type
of exploit



