CNIT 127: Exploit Development
Ch 8: Windows Overflows
Part 1

The

Shelle ()(|(‘l S
"Handbook

Topics
Thread Environment Block and Process
Environment Block

Stack-Based Buffer Overflows

Defeating ASLR (Address Space Layout
Randomization)

Frame-Based Exception Handlers
SEH Protections

Defenses in Server 2008 (not in textbook)

Thread Environment Block and
Process Environment Block

Thread Environment Block (TEB)

 Stores information about the currently
executing thread

* Also called the Thread Information Block
» Officially undocumented for Win 9x
» Partially documented for Win NT

* So many Win32 programs use
undocumented TEB fields that they are
effectively part of the API

Thread Environment Block (TEB)

 TEB can be used to get a lot of
information about a process without
calling the Win32 API

* Can get
« Last error
* Import Address Table
* Process startup arguments
* and more

Thread Environment Block (TEB)

« SEH pointer

* Info about the stack
— Much more (Link Ch 8a)

Contents of the TIB (32-bit Windows) [edit)
Windows o
Position Length Description
Versions
Win9x and . :
FS:[0x00] 4 NT Current Structured Exception Handling (SEH) frame
WinSx and y
FS:[0x04] 4 NT Stack Base / Bottom of stack (high address)
Win9x and - —
FS:[0x08] 4 NT Stack Limit / Ceiling of stack (low address)

FS: and GS:

Segment Registers

Left over from very early operating
systems

Not used much anymore for their original
purpose

On Windows 32-bit x86, FS: is used to

point to the TEB
— Links Ch 8e, 8y

Process Environment Block (PEB)

* An opaque data structure
* Details are hidden from its users

* Values are only intended to be
manipulated by calling subroutines that
can access the hidden information

* Used by Win NT internally

* Most fields intended only for internal OS
use

Process Environment Block (PEB)

* Only a few fields are documented by
Microsoft

« Contains data structures that apply across
a whole process

Process Environment Block (PEB)

Fields of the PEB that are documented by Microsoft'”

Field s

BeingDebugged

Ldr

ProcessParameters

PostProcessinitRoutine

Sessionld

meaning $

Whether the process is being
debugged

A pointerto a PEB_LDR DATA
structure providing information about
loaded modules

A pointer to a

RTL USER PROCESS PARAMETERS
structure providing information about
process startup parameters

A pointer to a callback function called
after DLL initialization but before the
main executable code is invoked

The session ID of the Terminal
Services session that the process is
part of

notes <

Microsoft recommends not using this field but
using the official Win32
CheckRemoteDebuggerPresent () library
function instead./!

Contains the base address of kernel32 and ntdll.

The RTL USER PROCESS PARAMETERS
structure is also mostly opaque and not
guaranteed to be consistent across multiple
versions of Windows.!*!

This callback function is used on Windows 2000,
but is not guaranteed to be used on later
versions of Windows NT.%)

The NtCreateUserProcess() system call
initializes this by calling the kernel's internal
MmGetSessionId() function.®

Stack-Based Buffer Overflows

Classic Technique

 Overwrite the saved return address
— With a value that points back into the stack

 When the function returns, it copies the
return address into EIP

* Return address points to NOP Sled

700,000

700,050

700,100

700,150

700,200

700,250

Buffer Overflow Using
Return Value

X X X X

NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
EGG
PAD
PAD
PAD
PAD
PAD

EIP

SEH Technique

* Overwrite the SEH
— With a value that points back into the stack

* Trigger an exception

* Modified exception handler points to NOP
Sled

700,000

700,050

700,100

700,150

700,200

700,250

Buffer Overflow Using SEH

X X X X

NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
EGG
PAD
PAD
PAD
PAD
PAD

Defeating ASLR (Address
Space Layout Randomization)

RAM

1GB

2GB

3GB

No ASLR

Windows

Antivirus

1GB

With ASLR

Antivirus

Windows

Using Return Value

« We're inside the
function

« ESP points to the
stack

 Find a JMP ESP and
insert its address
into the return
value

700,000

700,050

700,100

700,150

700,200

700,250

Buffer Overflow Using
Return Value

name[20]

Other variables

Return Value

X X X X

NOP
NOP
NOP

NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
EGG
PAD
PAD
PAD
PAD
PAD

EIP

Using SEH

Old Windows versions
left the address of
the SEH in EBX

Newer versions clear
all registers

But SEH address is at
ESP+8

Find POP, POP, RET
and put its address in
SEH

700,000

700,050

700,100

700,150

700,200

700,250

Buffer Overflow Using SEH

name([20]

Other variables

EXCEPTION_REGISTRATION

X X X X

NOP
NOP
NOP
NOP

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
EGG
PAD
PAD
PAD
PAD
PAD

Exception v

Frame-Based Exception
Handlers

Exception Handler

» Code that deals with problems from

within a running process
— Such as access violation or divide by zero

* Frame-Based Exception Handler
— Associated with a particular procedure
— Each procedure sets up a new stack frame

* Every thread in a Win32 process has at
least one frame-based exception handler

EXCEPTION REGISTRATION

« Each thread's TEB has the
address of the first

STACK

EXCEPTION_REGISTRATION Pointer to Next E_R Struct
StrUCtu re at fS: [O] = Pointer to Exception Handler

 When an exception occurs,

the O5 walks through the s s
list until a suitable handler
is found
Pointer to Next E_R Struct <«

Pointer to Exception Handler

SEH
Example
Code

#include <stdio.h>
#include <windows.h>

DWORD MyExceptionHandler(void)

{
printf("In exception handler...
ExitProcess(1);
return 0;
}
int main()
{
__try
{
__asm
{
// Cause an exception
XOor eax,eax
call eax
}

}
__except (MyExceptionHandler())
{

printf("oops...");

return 0;

.ll):

SEH Chain in Immunity

* View, SEH Chain
* This is Notepad's SEH Chain

=% SEH chain of thread € - O] x|

Address |SE handler

WBD?FECC ntdll.77199834
WAD?FF18 ntdll.77199834
BBD?FF38 ntdll.772375DE

Follow Address in Stack

BBD?FECC
AAD?FEDA
ABD?FED4
BBD?FEDS
BABD?FEDC
#BD? FEESA
BBD?FEE4
BBDIFEES
BABD? FEEC
#B8D? FEF@
BBDIFEF4
BABD? FEFS
BB8D? FEFC
B#BD9IFFB0
BADIFFa4
#8D? FFas8
BBDIFFBC
BBAD9FF18
ABD?FF14
BBD9FF18
BADIFF1C
BABD?FF28
BBDIFF24
BADIFF28
BBD?FF2C
AADIFF30
BWADIFF34
BBD?FF38
AADIFF3C
BWaDIFF48
BABD?FF44
BBD?FF48
BWADIFF4C

BBDIFF18
77199834
#83AD1CC
5151515151915 1%
B@BDIFEES
76294911
5151515151915 1%
@BDIFF28
7?71 CE4B6
5150515151915 10
7??FC1BFC
(51515 155151510}
5150515151915 1%
(glslalalalsls]t)
5151515151915 1%
(5151515151515 1%)
#BBBBEnn
#A8D?FEF4
(5151515151515 1%)
@BDIFF38
77199834
#83ADB2C
#BBBBERn
#BD9FF48

771CE489 &€
7721DA%4 o

#Bnvvaan
FFFFFFFF
7?72375DE
51515 155151510
5151515151915 1%

2721D@94 ol

(51515 [5]5]5]5]%)

Pointer

to next SEH record

SE handler

RETURN to kernel32.76294911

RETURN to ntdl1l.771CE4B6

Pointer

to next SEH record

SE handler

RETURN to ntdl1l.771CE489 from ntdll.771C

ntdll.DbglUiRemoteBreakin

End of SEH chain
SE handler

ntdll.DbgUiRemoteBreakin

Exceptions in Stack Overflows

» Suppose we overflow the stack to
overwrite the stored return address

« Unfortunately, we also overwrite other
variables by accident (collateral damage)

 Those may lead to exceptions, as other
instructions become invalid, before the
function returns

Overwriting EXCEPTION_REGISTRATION

* To gain control of exception handling

* On Windows 2000 and Win XP (before SP1)
— EBX points to the current

EXCEPTION_REGISTRATION structure
* On later Windows versions, all the
registers are zeroed when the SEH is

called
— In order to make exploitation more difficult

Old Windows Process

» At crash, EBX points to
EXCEPTION_REGISTRATION structure

 Overwrite

. Figure 8-2: Overwriting the
W] th "JMP EBX" E)?CEPTION_REGISTRATION structure
te EBX points here

Short |MP over
(and NOP, NOP)

Pointer to address that
executes "jmp ebx"

Start of real code

Modern Windows Process

e Stack at crash

01 7CEC?8 Brad: [¢ys 8 3 BT

w RETURN to ntdll.77BC71F9

917CEC9C 017CED8A (#:0

A17CECAB 0A17CFFC4 -

e

A17CECA4 0A17CED9C £8i6

» 3rd value points
to EXCEPTION
_REGISTRATION

structure
 Use POP, POP, RET

=
E Immunity Debugger - vulnserver.exe - [SEH chain ¢

&File View Debug Plugins ImmLib Optiol

% Hl |

Address |SE handler
A17BFFC4 4D4D4D4D
4D4D4D4D »e¢ CORRUPT ENTRY »ex

WX DIl b H 20 =

SEH Protections

Win 2003 Server

« Attempts to ensure that handler is valid
before using it, with these steps

1.1f handler is on the stack -- INVALID
— According to the TEB's entries FS:[4] and FS:{8]

2.I1f handler is in any loaded EXE or DLL -

MAYBE
— Otherwise VALID

Win 2003 Server

3. If the module is marked as "not allowed -
INVALID

4. If a module has no "Load Configuration
Directory”, or one with a small size: VALID

Three Ways to Exploit SEH on Windows
Server 2003

. Abuse an existing handler

2. Use code in an address outside all
modules

. Use code in a module without a "Load
Configuration Directory”

Defenses in Win Server 2008

Microsoft's Defenses

 Normal SEH attack (link Ch 8f)

N IH }—V app!_except handlerd

N [H }—) k32! except handlerd

N I H }—) ntdll! except handlerd

(U344444444

N =next pointer, H = exception handler function pointer

N 1 H }—} 0x7cl408ac
0x414106eb [o e
‘ pop eax

k ret

An exception will cause Ox7cl408ac to
be called as an exception handler as:

EXCEPTION DISPOSITION Handler(
PEXCEPTION RECORD E:-:.ﬂ;pti.‘.'.,
PVOID EstablisherFrame,
PCONTEXT ContextRecord,

DUANT NS emarshavrcAantovs .
PVOID Dispatchercontext).
:

SAFESEH

* Microsoft added this compiler switch to
Visual Studio 2003

* |t creates a whitelist of exception handler
addresses

 BUT this depends on the developer using

the switch
— All legacy code must be recompiled

SEHOP

 Verifies that the exception handler is
intact before using it

* The pointer to the next handler comes
before the pointer to the registration
record

* So an exploit will usually damage the
*Next pointer

EXCEPTION_REGISTRATION_RECORD

O0x7cl408ac
G // N\
0x414106eb Pop eax
pop eax
\ ret _J

typedef struct EXCEPTION REGISTRATION RECORD
{
struct EXCEPTION REGISTRATION RECORD *Next;
PEXCEPTION ROUTINE Handler;
} EXCEPTION REGISTRATION RECORD, *PEXCEPTION REGISTRATION RECORD;

How SEHOP Works

» Adds an extra registration record at the
end of the list

* Walks the exception handler list to ensure
that the added record can be reached

* Will detect corruption of *Next pointers

SEHOP

Valid SEH Chain Invalid SEH Chain

‘ N I H j—)' app!_except_handlerd J

O0x7cl408ac J

\

N I H —)‘ k32!_except_handlerd J 0x414106eb ?
< - > " ’L J
v
| | | Can’treach final record!
N A H]—)‘ ntdll!FinalExceptionHandler ,' ?

N = next pointer, H = exception handler function pointer

Windows Versions

« SEHOP is enabled by default in Windows
Server 2008

» Disabled by default in Windows Vista
— Because it breaks some legacy code

* Also disabled by default on Windows 7
— But it can be enabled in the Registry
— Link Ch 8k

File Edit View Favontes Help
S b . GRE_Initialize Name
b ICM 8] (Default) REG_SZ (value not se

4 A Image File Execution Options 4 DisableExceptionChainValidation REG_DWORD 000000000 (
- Ju DIINXOptions

- Ju BxtExport.exe
-, ieduinit.exe
J. IElnstal.exe
1 ielowutil.exe
- Ju ieUnatt.exe
. iexplore.exe
.}, msfeedssync.exe
1. mshta.exe
1. vulnserver.exe
> ImFlleMappmg
>+ 4y InstalledFeatures |
1. KnownFunctionTableDlls EI
1. KnownManagedDebuggingDlls
b . LanguagePack

4E = ' m | » <« m |

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\vulnserver.exe

- e,

hu4u34u70
40830928
HA4030A0

WB4U3UAS8
WA40830B80H
Wh40W3WE8

Debugged program was unable to process exception

