
CNIT 127: Exploit Development  
Ch 8: Windows Overflows  

Part 1

Rev. 3-15-17



Topics
• Thread Environment Block and Process 

Environment Block 
• Stack-Based Buffer Overflows 
• Defeating ASLR (Address Space Layout 

Randomization) 
• Frame-Based Exception Handlers 
• SEH Protections 
• Defenses in Server 2008 (not in textbook)



Thread Environment Block and 
Process Environment Block



Thread Environment Block (TEB)

• Stores information about the currently 
executing thread 

• Also called the Thread Information Block 
• Officially undocumented for Win 9x 
• Partially documented for Win NT 
• So many Win32 programs use 

undocumented TEB fields that they are 
effectively part of the API



Thread Environment Block (TEB)

• TEB can be used to get a lot of 
information about a process without 
calling the Win32 API 

• Can get 
• Last error 
• Import Address Table 
• Process startup arguments 
• and more



Thread Environment Block (TEB)

• SEH pointer 
• Info about the stack 
– Much more (Link Ch 8a)



FS: and GS:

• Segment Registers 
• Left over from very early operating 

systems 
• Not used much anymore for their original 

purpose 
• On Windows 32-bit x86, FS: is used to 

point to the TEB 
– Links Ch 8e, 8y



Process Environment Block (PEB)

• An opaque data structure 
• Details are hidden from its users 
• Values are only intended to be 

manipulated by calling subroutines that 
can access the hidden information 

• Used by Win NT internally 
• Most fields intended only for internal OS 

use



Process Environment Block (PEB)

• Only a few fields are documented by 
Microsoft 

• Contains data structures that apply across 
a whole process



Process Environment Block (PEB)



Stack-Based Buffer Overflows



Classic Technique

• Overwrite the saved return address 
–With a value that points back into the stack 

• When the function returns, it copies the 
return address into EIP 

• Return address points to NOP Sled





SEH Technique

• Overwrite the SEH 
–With a value that points back into the stack 

• Trigger an exception 
• Modified exception handler points to NOP 

Sled





Defeating ASLR (Address 
Space Layout Randomization)





Using Return Value

• We're inside the 
function 

• ESP points to the 
stack 

• Find a JMP ESP and 
insert its address 
into the return 
value



Using SEH

• Old Windows versions 
left the address of 
the SEH in EBX 

• Newer versions clear 
all registers 

• But SEH address is at 
ESP+8 

• Find POP, POP, RET 
and put its address in 
SEH



Frame-Based Exception 
Handlers



Exception Handler

• Code that deals with problems from 
within a running process 
– Such as access violation or divide by zero 

• Frame-Based Exception Handler 
– Associated with a particular procedure 
– Each procedure sets up a new stack frame 

• Every thread in a Win32 process has at 
least one frame-based exception handler



EXCEPTION_REGISTRATION

• Each thread's TEB has the 
address of the first 
EXCEPTION_REGISTRATION 
structure at fs:[0] 

• When an exception occurs, 
the OS walks through the 
list until a suitable handler 
is found



SEH  
Example  

Code



SEH Chain in Immunity

• View, SEH Chain 
• This is Notepad's SEH Chain



Follow Address in Stack



Exceptions in Stack Overflows

• Suppose we overflow the stack to 
overwrite the stored return address 

• Unfortunately, we also overwrite other 
variables by accident (collateral damage) 

• Those may lead to exceptions, as other 
instructions become invalid, before the 
function returns



Overwriting EXCEPTION_REGISTRATION

• To gain control of exception handling 
• On Windows 2000 and Win XP (before SP1) 
– EBX points to the current 

EXCEPTION_REGISTRATION structure 

• On later Windows versions, all the 
registers are zeroed when the SEH is 
called 
– In order to make exploitation more difficult



Old Windows Process

• At crash, EBX points to 
EXCEPTION_REGISTRATION structure 

• Overwrite  
With "JMP EBX" 



Modern Windows Process

• Stack at crash 

• 3rd value points  
to EXCEPTION  
_REGISTRATION  
structure 

• Use POP, POP, RET



SEH Protections



Win 2003 Server

• Attempts to ensure that handler is valid 
before using it, with these steps 

1.If handler is on the stack -- INVALID 
– According to the TEB's entries FS:[4] and FS:{8] 

2.If handler is in any loaded EXE or DLL – 
MAYBE 
– Otherwise VALID



Win 2003 Server

3. If the module is marked as "not allowed – 
INVALID 

4. If a module has no "Load Configuration 
Directory", or one with a small size: VALID



Three Ways to Exploit SEH on Windows 
Server 2003

1. Abuse an existing handler 
2. Use code in an address outside all 

modules 
3. Use code in a module without a "Load 

Configuration Directory"



Defenses in Win Server 2008

Not in Book



Microsoft's Defenses

• Normal SEH attack (link Ch 8f)



SAFESEH

• Microsoft added this compiler switch to 
Visual Studio 2003 

• It creates a whitelist of exception handler 
addresses 

• BUT this depends on the developer using 
the switch 
– All legacy code must be recompiled



SEHOP

• Verifies that the exception handler is 
intact before using it 

• The pointer to the next handler comes 
before the pointer to the registration 
record 

• So an exploit will usually damage the 
*Next pointer



EXCEPTION_REGISTRATION_RECORD



How SEHOP Works

• Adds an extra registration record at the 
end of the list 

• Walks the exception handler list to ensure 
that the added record can be reached 

• Will detect corruption of *Next pointers



SEHOP 



Windows Versions

• SEHOP is enabled by default in Windows 
Server 2008 

• Disabled by default in Windows Vista 
– Because it breaks some legacy code 

• Also disabled by default on Windows 7 
– But it can be enabled in the Registry 
– Link Ch 8k






