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What is a Heap?



Memory Map

• In gdb, the "info proc map" command 
shows how memory is used 

• Programs have a stack, one or more 
heaps, and other segments 

• malloc() allocates space on the heap 
• free() frees the space



Heap and Stack



Heap Structure
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A Simple Example



A Simple Example



Viewing the Heap in gdb



Exploit and Crash



Crash in gdb



Targeted Exploit



The Problem With the Heap



EIP is Hard to Control

• The Stack contains stored EIP values 
• The Heap usually does not 
• However, it has addresses that are used 

for writes 
– To fill in heap data 
– To rearrange chunks when free() is called



Action of Free()

• Must write to the forward and reverse pointers 
• If we can overflow a chunk, we can control 

those writes 
• Write to arbitrary RAM 
– Image from mathyvanhoef.com, link Ch 5b



Target RAM Options

• Saved return address on the Stack 
– Like the Buffer Overflows we did previously 

• Global Offset Table 
– Used to find shared library functions 

• Destructors table (DTORS) 
– Called when a program exits 

• C Library Hooks



Target RAM Options

• "atexit" structure (link Ch 4n) 
• Any function pointer 
• In Windows, the default unhandled 

exception handler is easy to find and 
exploit



Project Walkthroughs

• Proj 8 
– Exploiting a write to a heap value 

• Proj 8x 
– Taking over a remote server 

• Proj 5x 
– Buffer overflow with a canary


