
CNIT 127: Exploit Development  
 

Ch 5: Introduction to Heap Overflows

Updated 2-14-17



What is a Heap?



Memory Map

• In gdb, the "info proc map" command 
shows how memory is used 

• Programs have a stack, one or more 
heaps, and other segments 

• malloc() allocates space on the heap 
• free() frees the space



Heap and Stack



Heap Structure

Size of previous chunk

Size of this chunk

Pointer to next chunk

Pointer to previous chunk

Data 

Size of previous chunk

Size of this chunk

Pointer to next chunk

Pointer to previous chunk

Data 

Size of previous chunk

Size of this chunk

Pointer to next chunk

Pointer to previous chunk

Data 



A Simple Example



A Simple Example



Viewing the Heap in gdb



Exploit and Crash



Crash in gdb



Targeted Exploit



The Problem With the Heap



EIP is Hard to Control

• The Stack contains stored EIP values 
• The Heap usually does not 
• However, it has addresses that are used 

for writes 
– To fill in heap data 
– To rearrange chunks when free() is called



Action of Free()

• Must write to the forward and reverse pointers 
• If we can overflow a chunk, we can control 

those writes 
• Write to arbitrary RAM 
– Image from mathyvanhoef.com, link Ch 5b



Target RAM Options

• Saved return address on the Stack 
– Like the Buffer Overflows we did previously 

• Global Offset Table 
– Used to find shared library functions 

• Destructors table (DTORS) 
– Called when a program exits 

• C Library Hooks



Target RAM Options

• "atexit" structure (link Ch 4n) 
• Any function pointer 
• In Windows, the default unhandled 

exception handler is easy to find and 
exploit



Project Walkthroughs

• Proj 8 
– Exploiting a write to a heap value 

• Proj 8x 
– Taking over a remote server 

• Proj 5x 
– Buffer overflow with a canary


