
CNIT 127: Exploit Development  
 

Ch 4: Introduction to Format String 
Bugs

Updated 2-9-17



Understanding Format Strings



Data Interpretation

• RAM contains bytes 
• The same byte can be interpreted as 
– An integer 
– A character 
– Part of an instruction 
– Part of an address 
– Part of a string 
– Many, many more...



Format String Controls Output



Format String Demo



Most Important for Us

• %x   Hexadecimal 
• %8x  Hexadecimal padded to 8 chars 
• %10x  Hexadecimal padded to 10 chars 
• %100x Hexadecimal padded to 100 chars



Format String Vulnerabilities



Buffer Overflow

• This code is obviously stupid 
char name[10]; 
strcpy(name, "Rumplestiltskin"); 

• C just does it, without complaining



Format String Without Arguments

• printf("%x.%x.%x.%x"); 
– There are no arguments to print! 
– Should give an error message 
– Instead, C just pulls the next 4 values from 

the stack and prints them out 
– Can read memory on the stack 
– Information disclosure vulnerability



Format String Controlled by Attacker



Explanation

• %x.%x.%x.%x -- read 4 words from stack 
• %n.%n.%n.%n -- write 4 numbers to RAM 

locations from the stack



%n Format String

• %n writes the number of characters 
printed so far 

• To the memory location pointed to by the 
parameter 

• Can write to arbitrary RAM locations 
• Easy DoS 
• Possible remote code execution



printf Family

• Format string bugs affect a whole family 
of functions



Countermeasures



Defenses Against Format String 
Vulnerabilities

• Stack defenses don't stop format string 
exploits 
– Canary value 

• ASLR and NX 
– Can make exploitation more difficult 

• Static code analysis tools 
– Generally find format string bugs 

• gcc 
– Warnings, but no format string defenses



Exploitation Technique



Steps

• Control a parameter 
• Find a target RAM location 
– That will control execution 

• Write 4 bytes to target RAM location 
• Insert shellcode 
• Find the shellcode in RAM 
• Write shellcode address to target RAM 

location



Control a Parameter

• Insert four letters before the %x fields 
• Controls the fourth parameter 

– Note: sometimes it's much further down the 
list, such as parameter 300



Target RAM Options

• Saved return address 
– Like the Buffer Overflows we did previously 

• Global Offset Table 
– Used to find shared library functions 

• Destructors table (DTORS) 
– Called when a program exits 

• C Library Hooks



Target RAM Options

• "atexit" structure (link Ch 4n) 
• Any function pointer 
• In Windows, the default unhandled 

exception handler is easy to find and 
exploit



Disassemble in gdb

• First it calls printf 
• With a format string vulnerability 

• Then it calls puts



Targeting the GOT

• Pointer to puts 
• Change pointer to hijack execution 



Writing to Target RAM

• We now control the destination address, 
but not the value written there



Python Code to Write 1 Word



Write 4 Words, All The Same



Write 4 Bytes, All The Same



Write 4 Bytes, Increment=8



Write 0 in First Byte



Write Chosen Value in 1st Byte



Write Chosen Values in Bytes 1-2



Write Chosen Values in Bytes 1-2



Write Chosen Values in 4 Bytes



Write Chosen Values into 4 Bytes





Write 4 Bytes, Arbitrary



Python Code to Write a Chosen Word 



Inserting Dummy Shellcode

• \xcc is BRK



View the Stack in gdb

• Choose an address in the NOP sled



Dummy Exploit Runs to \xcc



Testing for Bad Characters

• \x09 is bad



Testing for Bad Characters

• \x10 is bad



Testing for Bad Characters

• Started at 11 = 0x0b 
• \x20 is bad



Testing for Bad Characters

• Started at 33 = 0x21 
• No more bad characters



Generate Shellcode

• msfvenom -p linux/x86/shell_bind_tcp 
•  -b '\x00\x09\x0a\x20'  
•  PrependFork=true 
•  -f python



Keep Total Length of Injection Constant

• May not be necessary, but it's a good habit



Final Check

• Address in NOP 
sled 

• Shellcode 
intact



Shell (in gdb)

• Wait for the port to close 

• Test it outside gdb


