
CNIT 127: Exploit Development  
 

Ch 2: Stack Overflows in Linux

Stack-based Buffer Overflows

• Most popular and best understood
exploitation method

• Aleph One's "Smashing the Stack for Fun
and Profit" (1996)
– Link Ch 2a

• Buffer
– A limited, contiguously allocated set of

memory
– In C, usually an array

C and C++ Lack Bounds-Checking

• It is the programmer's responsibility to ensure
that array indices remain in the valid range

#include <stdio.h>
#include <string.h>

int main() {
 int array[5] = {1, 2, 3, 4, 5};
 printf("%d\n", array[5]);
}

Using gdb (GNU Debugger)
• Compile with symbols

– gcc -g -o ch2a ch2a.c

• Run program in debugger
– gdb ch2a

• Show code, place breakpoint, run to it
– list
– break 7
– run

• Examine the memory storing "array"
– x/10x &array

Reading Past End of Array

Reading Past End of Array

• array[5] = 0xb7fb63c4

Writing Past End of Array

Compile and Run, Crash

Debug

• Open in debugger
– gdb ch2b

• Run
– run

• Examine the memory storing "array"
– x/50x &array

Buffer Overflow

• Many RAM locations now contain 0xa
• But why, precisely, did that cause a crash?

Debug

• Examine registers
– info registers

• Examine assembly code near eip
– x/10i $eip-10

10 (0xa) is not in any register

Last Command Writes $0xa to RAM

• Evidently we went so far we exited the
RAM allocated to the program

Intel v. AT&T Format
• gdb uses AT&T format by default, which is

popular with Linux users
– mov source, destination

• Windows users more commonly use Intel
format
– MOV DESTINATION, SOURCE

Jasmin

Assembly Language Simulator

The Stack

LIFO (Last-In, First-Out)

• ESP (Extended Stack Pointer) register
points to the top of the stack

• PUSH puts items on the stack
– push 1
– push addr var

Stack

• POP takes items off the stack
– pop eax
– pop ebx

EBP (Extended Base Pointer)

• EBP is typically used for calculated
addresses on the stack
– mov eax, [ebp+10h]

• Copies the data 16 bytes down the stack
into the EAX register

Functions and the Stack

Purpose
• The stack's primary purpose is to make the

use of functions more efficient
• When a function is called, these things occur:

– Calling routine stops processing its instructions
– Saves its current state
– Transfers control to the function
– Function processes its instructions
– Function exits
– State of the calling function is restored
– Calling routine's execution resumes

Example

Using gdb (GNU Debugger)
• Compile with symbols

– gcc -g -o ch2d ch2d.c

• Run program in debugger
– gdb ch2d

• Show code, place breakpoint, run to it
– list 1,12
– break 9
– break 11
– break 4

Using gdb (GNU Debugger)
• Run to breakpoint after line 9

• run

• Examine registers
– info reg

• Run to breakpoint after line 4
• continue

• Examine registers
– info reg

In main() before calling function()

• esp 0xbffff460
• ebp 0xbffff468 (start of stack frame)
• eip 0x8048414 <main+17>

In function()

• esp 0xbffff430
• ebp 0xbffff450 (start of stack frame)
• eip 0x8048401 <function+6>

Examine the Stack

– x/12x $esp
• Highlight is function()'s stack frame
• Outlined area shows these items

– Return address
– Arguments of function(1,2)

• Next to the left is the original value of $ebp

Using gdb (GNU Debugger)
• Run to breakpoint after line 11
• continue

• Examine registers
– info reg

In main() after calling function()

• esp 0xbffff460
• ebp 0xbffff468
• eip 0x8048420 <main+29>

Functions and the Stack

• Primary purpose of the stack
– To make functions more efficient

• When a function is called
– Push function's arguments onto the stack
– Call function, which pushes the return address

RET onto the stack, which is the EIP at the
time the function is called

Functions and the Stack

– Before function starts, a prolog executes,
pushing EBP onto the stack

– It then copies ESP into EBP
– Calculates size of local variables
– Reserves that space on the stack, by

subtracting the size from ESP
– Pushes local variables onto stack

Functions and the Stack
#include <stdio.h>

void function(int a, int b)
{

int array[5];
}

main()
{

function(1,2);
printf("This is where the  

 return address points\n");
}

• <main+3> puts a's value, 1, onto the stack
• <main+5> puts b's value, 2, onto the stack
• <main+7> calls function, which implicitly

pushes RET (EIP) onto the stack

• Prolog
– Push EBP onto stack
– Move ESP into EBP
– Subtract 0x14 from stack to reserve space for array

• leave restores the original stack, same as
– mov esp, ebp
– pop ebp

Stack Buffer Overflow Vulnerability

Compile and Run

Disassemble return_input

Set Breakpoints

• At call to gets
• And at ret

Disassemble main

• Next instruction after the call to
return_input is 0x08048453

Run Till First Breakpoint

• Highlighted values are the saved EBP and
the RET address

Continue and Input 40 Characters

• 30 characters are stored correctly
• Next four overwrite stored EBP with 0x44444444

('DDDD')
• Next four overwrite RET

Examine $eip, Step One Instruction

• x/1i means "Examine one instruction"
• stepi executes one machine language

instruction

Observe Overwritten Registers

• ebp and eip are 0x44444444 = 'DDDD'

Stack Overflow

Controlling eip

• 0x44444444 is invalid and causes the
program to halt

• We can put any valid memory address
there

• However, at the point of the crash we
have returned to main() so we should
choose an instruction in main()

Call to return_input

• 0x0804844e
– stored backwards in a string
– "\x4e\x84\x04\x08"

Python Exploit Code
• sys.stdout.write doesn't put a space or

linefeed at end

How to Debug with Arguments

