
CNIT 127: Exploit Development  
 

Ch 18: Source Code Auditing

Updated 4-10-17

Why Audit Source Code?

• Best way to discover vulnerabilities
• Can be done with just source code and

grep
• Specialized tools make it much easier

Cscope

• A source code browsing tool
• Useful for large code trees,

such as the whole Linux
kernel

• Many useful search
functions

• Cbrowser: GUI front-end
• Links Ch 18a, 18b

Ctags

• Indexes source code
• Creates a tag file with

locations for language
tags in files scanned

• Works in many
languages, including C
and C++
– Link Ch 18c

Text Editor

• Vim and Emacs have features that make
writing and searching though large
amounts of code easy

• Bracket-matching: find matching ([{

Automated Source Code
Analysis Tools

Splint

• Badly out-of date (last revised in 2007)
• Output a little hard to understand

– Links Ch 18d, 18e

• Many available, specialized by language
• Link Ch 18f

• Easy to use
• Finds about half the obvious

vulnerabilities we've exploited

Heap Overflow

Finds Some Vulnerabilities

• But not the overflow!

Format String Vulnerability

• It doesn't find
it at all!

Flawfinder

• Much better
• In Kali

• apt-get update
• apt-get install flawfinder

Methodology

Top-Down (Specific) Approach

• Search for specific lines of vulnerable
code, such as format string errors

• Auditor doesn't have to understand
application in depth

• Misses vulnerabilities that span more than
one part of the code

Bottom-Up Approach

• Auditor reads large portion of code
• Starting at main()

• Time-consuming but can reveal subtle
bugs

Selective Approach

• Most auditors use this approach
• Locate code that can be reached with

attacker-defined input
• Focus energy on that code

• Learn the purpose of that code thoroughly

Vulnerability Classes

Generic Logic Errors

• Requires good understanding of an
application
– And internal structures and classes

• Example: wildcard certificates
– Pascal-based CA will sell a certificate for *

\0.evil.com
– C-based browser will see it as *, a wildcard

• Link Ch 18g

(Almost) Extinct Bug Classes

• Unbounded memory copy functions
– strcpy(), sprintf(), strcat(), gets(), …

• Hunted nearly to extinction

Root Cause (from Microsoft)

Bypassing ASLR & DEP

Format Strings

• Easy to find with a code audit
– Although cppcheck failed

• Often found in logging code
• Vulnerable only if attacker controls the

format string

Generic Incorrect Bounds-Checking

• Coder attempts to check limits, but does
it incorrectly

• Example: Snort RCP Processor (2003)
– Processes a series of RPC fragments
– Checks each fragment to make sure it's not

larger than the buffer
– But it should check the total size of all

combined fragments

Snort RCP Processor (2003)

Loop Constructs

• Coders often use intricate loops, and loops
within loops

• Complex interactions can lead to insecurities
• Led to a buffer overflow in Sendmail

• Link Ch 18h

Demonstration Exploit

• Link Ch 18i

Off-by-One Vulnerabilities

• Often caused by improper null-
termination of strings

• Frequently found in loops or introduced
by common string functions

• Can lead to arbitrary code execution

Example from Apache

• When both if statements are true
– Space allocated is one byte too small
– memcpy will write one null out of bounds

OpenBSD ftp Daemon

• If last character is a quote, it can be
written past the bounds of the input
buffer

strncat()
• Strncat always null-terminates its output

string
• Will write a null byte out of bounds unless

the third argument is equal to the
remaining space in the buffer minus one
byte

Non-Null Termination Issues

• If a string is not terminated with a null
– Memory after the string is interpreted as part

of the string
– May increase length of string
– String writes may corrupt memory outside the

string buffer
– Can lead to arbitrary code execution

strncpy()

• If there's not enough space in the
destination buffer
– strncpy() won't null-terminate the string it

writes

strncpy() Example
– First strncpy won't null-terminate not_term_buf
– Second strcpy is unsafe, even though both

buffers are the same size

– Fix it by adding this line of code after the first
strcpy

Skipping Past Null-Termination

• String-processing loops that process more
than one character at a time
– Or where assumptions about string length are

made

• Can make it possible to write past end of
a buffer
– Possible arbitrary code execution

Example from Apache

• This line is intended to skip past :// in a
URL
– cp += 3

But Not All Schemes End in ://

• If the URI is ldap:a
– The null byte is skipped

Signed Comparison Vulnerabilities

• Coder attempts to check input length
• But uses a signed integer variable
• Or two different integer types or sizes

– C sometimes converts them both to signed
integers before comparing them

• Following example from Apache
– Led to code execution on Windows and BSD

Unix

Example from Apache

• bufsize is a signed integer
– Remaining space in the buffer

• r->remaining is signed
– Chunk size from the request

• len_to_read should be the smaller of the two
– Negative chunk size tricks the code into performing a

large memcpy later, because it's cast to
unsigned

Integer Conversions

• Link Ch 18l

• A hashed password can begin with 0e and
contain only digits (very rare)
– Like 0e12353589661821035685

• PHP reads that as scientific notation
– 0^123…
– Always zero (link Ch 18j)

Double Free Vulnerabilities

• Freeing the same memory chunk twice
• Can lead to memory corruption and arbitrary

code execution
• Most common when heap buffers are stored

in pointers with global scope
• Good practice: when a global pointer is

freed, set it to Null to prevent it being re-
used

• Prevents dangling pointers

Out-of-Scope Memory Usage
Vulnerabilities

• Use of a memory region
before or after it is valid

• Also called "Dangling
Pointer"
– Image from Wikipedia

• Link Ch 18k)

Uninitialized Variable Usage

• Static memory in the .data or .bss
sections of an executable are initialized
to null on program startup

• But memory on the stack or heap is not
• Uninitializes variables will contain data

from previous function calls
• Argument data, saved registers, or local

variables from previous function calls

Uninitialized Variable Usage

• Rare, because they can lead to immediate
program crashes
• So they get fixed

• Look for them in code that is rarely used
• Such as handlers for uncommon errors

• Compilers attempt to prevent these errors

Example

• If data is null
– test is never assigned any value
– But test is still freed

Exploitation

• The "uninitialized" data in test is not
random

• It comes from previous variables and
function calls

• It may be controlled by the attacker
• So the free() leads to a controllable

memory write
– Arbitrary code execution

Use After Free Vulnerabilities

• Heap buffers are temporary
– Released with free()

• But a program may use a pointer after
free()
– If more than one variable points to the same

object

• Allows an attacker to write to RAM
– Possible arbitrary code execution

Multithreaded Issues and  
Re-Entrant Safe Code

• A global variable is used by more than one
thread, without proper locking
– A variable might be changed unexpectedly by

another thread
• Such issues won't appear until the server

is under heavy load
– May remain as intermittent software bugs

that are never verified

