CNIT 127: Exploit Development

Ch 18: Source Code Auditing

The

Shellcoders
"“"""“’"“"”:ul(ll)m)k

Updated 4-10-17

Why Audit Source Code?

* Best way to discover vulnerabilities
» Can be done with just source code and

grep
* Specialized tools make it much easier

Cscope

A source code browsing tool

Useful for large code trees,
such as the whole Linux
kernel

Many useful search
functions

Cbrowser: GUI front-end
* Links Ch 18a, 18b

Ctags

. Indexes source code EXUBERANT

* Creates a tag file with CTAGS

locations for language
tags in files scanned

* Works in many
languages, including C
and C++
— Link Ch 18c

Text Editor

* Vim and Emacs have features that make
writing and searching though large
amounts of code easy

» Bracket-matching: find matching ([{

Automated Source Code
Analysis Tools

Splint

Splint

Annotation-Assisted Lightweight Static Checking
Inexpensive Program Analysis Group
University of Virginia, Department of Computer Science

* Badly out-of date (last revised in 2007)

e Qutput a little hard to understand
— Links Ch 18d, 18e

OPEN SOURCE STATIC CODE ANALYSIS SECURITY TOOLS

* Many available, specialized by language
* Link Ch 18f

Project 19x: Source Code Analysis with cppcheck (10 pts.)

« Easy to use

* Finds about half the obvious
vulnerabilities we've exploited

Heap Overflow

GNU nano 2.2.6 File: heap0.c

{
¥

int main(int argc, char **argv)

{

printf("level has not been passed\n");

struct data *d;
struct fp *f;

malloc(sizeof (struct data));
malloc(sizeof (struct fp));
= nowinner;

printf("data i1s at %p, fp is at %p\n", d, f);

strcpy(d->name, argv[1l]);

f->fp();

Finds Some Vulnerabilities

 But not the overflow!

cppcheck# cppcheck heap0.c --enable=all
Checking heap0O.c...

[heap0.c:40]: (error) |Memory leak: d
[heap0.c:40]: (error) |[Memory leak: f

[heap0.c:34]: (error) Memory 1s allocated but not initialized: d

Checking usage of global functions..
[heap0.c:15]: (style) The function 'winner' 1is never used.
(information) Cppcheck cannot find all the include files (use --check-confi
g for details)
: ~/cppcheck# |}

Format String Vulnerability

#include <stdio.h>

e |t doesn't find
it at all!

int main(int argc, char **argv){
char buf[1024];
strcpy(buf, argv[l]);
printf (buf);
printf("\n");

. ~/cppcheck# cppcheck fs.c --enable=all
Checking fs.c...

[fs.c:5]: (error) Buffer overrun possible for long command line
arguments.

Checking usage of global functions..

(information) Cppcheck cannot find all the include files (use --
check-config for details)
: ~/cppcheck#

Flawfinder

* Much better
 In Kali
* apt-get update
* apt-get install flawfinder

Methodology

Top-Down (Specific) Approach

» Search for specific lines of vulnerable
code, such as format string errors

* Auditor doesn't have to understand
application in depth

* Misses vulnerabilities that span more than
one part of the code

Bottom-Up Approach

» Auditor reads large portion of code
 Starting at main()

* Time-consuming but can reveal subtle
bugs

Selective Approach

* Most auditors use this approach

* Locate code that can be reached with
attacker-defined input

* Focus energy on that code
* Learn the purpose of that code thoroughly

Vulnerability Classes

Generic Logic Errors

» Requires good understanding of an

application
— And internal structures and classes

« Example: wildcard certificates
— Pascal-based CA will sell a certificate for *
\O.evil.com

— C-based browser will see it as *, a wildcard
* Link Ch 18¢

(Almost) Extinct Bug Classes

» Unbounded memory copy functions
— strcpy(), sprintf(), strcat(), gets(), ...

* Hunted nearly to extinction

Root Cause (from Microsoft)

Figure 3. The root causes of exploited Microsoft remote code execution CVES, by year of security bulletin

2006 2009 2010 20m 2012 2013

100%

90%

80%

70%

60%

50%

40%

30%

20%

Percent of exploited Microsoft remote code execution CVEs

10%

0%

® Stack corruption = Heap corruption ® Use-after-free = Type confusion = Unsafe DLLload ® Other

Bypassing ASLR & DEP

Figure 4. Techniques used by exploits targeting Microsoft products, January 2012-February 2014

120%
¥ 100%
=
(o8
5 0%
o
3
£ 60%
B
a
b
v
S 40%
€
O
O
& 20%

0%

Non-ASLR DLL Information Not applicable Other Heap spraying
disclosure

ASLR bypass DEP bypass Other

Format Strings

» Easy to find with a code audit
— Although cppcheck failed

» Often found in logging code

* Vulnerable only if attacker controls the
format string

Possibly Vulnerable

syslog (LOG ERR,string);

Non-Vulnerable

syslog (LOG ERR,"%s",string);

Generic Incorrect Bounds-Checking

» Coder attempts to check limits, but does
it incorrectly

« Example: Snort RCP Processor (2003)
— Processes a series of RPC fragments
— Checks each fragment to make sure it's not
larger than the buffer
— But it should check the total size of all
combined fragments

Snort RCP Processor (2003

while (index < end)

/* get the fragment length (31 bits) and move the pointer to the
S 1 data '

art of the actu:

a
idrptr = (int *) inde

- -
o

.
r

-
4]
o |
~t
o 1

I

—
b
-
rt
(—

»
o 3
Q.
~

o)
rt
~
g
O
>
roy
r:j
rTy
r:l
”~
m
L)

-~

if(length > size)

DebugMessage (DEBUG FLOW, "WARNING: rpc decode calculated bad "

length: d\n", length);

7

!
- —
elsSe

total len += length;

for (i=0; i < length; i++,rpc++,index++,hdrptr++)
-

rpc = *index;

Loop Constructs

Coders often use intricate loops, and loops
within loops

Complex interactions can lead to insecurities
Led to a buffer overflow in Sendmail

The prescan() function in the address parser (parseaddr.c) in Sendmail before 8.12.9 does
not properly handle certain conversions from char and int types, which can cause a length
check to be disabled when Sendmail misinterprets an input value as a special "NOCHAR"
control value, allowing attackers to cause a denial of service and possibly execute arbitrary

code via a buffer overflow attack using messages, a different vulnerability than CVE-2002-
1337.

Link Ch 18h

Demonstration Exploit

e Link Ch 18i

[user@frida ~]$ sendmail user@diego -\

<O >L
PR LS LS AT ATl el el Sl Bl Bl e LB L S S S S T LS L S S S S T Ll L el e S AT AT L L
E el el el e i S i At el el el el e lelelelelelelele lelelele sl il i it it l ol e lele e
pl el el eleisivi el el elelelelelelelelelelelelelelelelelelelielelielieleisiele
L L S L Sl Sl Sl Sl el el e lel el e lelelelelelelels lelelelelelelelelelelelele lels
>0
<3>3 <>L
>N

Off-by-One Vulnerabilities

» Often caused by improper null-
termination of strings

* Frequently found in loops or introduced
by common string functions

* Can lead to arbitrary code execution

Example from Apache

* When both if statements are true
— Space allocated is one byte too small
— memcpy will write one null out of bounds

char

alloc
if (la
all

[\

fold buf

memcpy (last

if (last len + len

*fold buf;

len += al
st len +
c len =

field +

= (cha
memcpy (fold buf, last field,

C
st fa fol

ield = fo

> alloc len) {
loc len;
len > alloc len)

last len + len;

{

r *)apr palloc(r->pool, alloc len);

1d buf;

last len, field,

last len);

len +1); /* 41 for nul */

OpenBSD ftp Daemon

» If last character is a quote, it can be

written past the bounds of the input
buffer

. N - ‘} IMAXPATHLEN] -
o s V= 103 - \ X PAT}] . N\
1al nNpacn | MAAYALINRNLEN)
+ .
rTOY \ =) ¢ Afmame I = '\ L& \ < =1 7antf i(inparh — . 4+
4 1§ Vv s il1allle H ; % 1 o - & Vi \IDPA LT ’
"nmMearte) Errama e

strncat()

» Strncat always null-terminates its output
string

* Will write a null byte out of bounds unless
the third argument is equal to the

remaining space in the buffer minus one
byte

The following example shows incorrect usage of strncat:
strcpy (buf,"Test:");
strncat (buf, input,sizeof (buf)-strlen (buf));

The safe usage would be:
strncat (buf, input,sizeof (buf)-strlen(buf)-1);

Non-Null Termination Issues

* If a string is not terminated with a null
— Memory after the string is interpreted as part
of the string
— May increase length of string
— String writes may corrupt memory outside the
string buffer
— Can lead to arbitrary code execution

strncpy/()

* If there's not enough space in the

destination buffer
— strncpy() won't null-terminate the string it
writes

strncpy() Example

— First strncpy won't null-terminate not_term_buf

— Second strcpy is unsafe, even though both
buffers are the same size

char dest buf[256];
char not term buf([256];

strncpy(not term buf,input,sizeof (non term buf));

strcpy(dest buf,not term buf);

— Fix it by adding this line of code after the first
strcpy

not term buf[sizeof (not term buf) - 1] = 0;

Skipping Past Null-Termination

» String-processing loops that process more

than one character at a time
— Or where assumptions about string length are
made

« Can make it possible to write past end of

a buffer
— Possible arbitrary code execution

Example from Apache

* This line is intended to skip past :// in a

URL
—cp +=3

else 1f (is absolute uri(r=->filename)) {
/* it was finally rewritten to a remote URL */

/* skip 'scheme:' */
for (cp = r->filename; *cp != '":' && *cp != "\0'; cp++)

/* skip '://' */

cp += 3;

But Not All Schemes End in ://

 If the URI is ldap:a
— The null byte is skipped

int 1 = strlen(uri);
if | (i > 7 && strncasecmp (uri, "http://", 7) == 0)
| (1L > 8 && strncasecmp(uri, "https://", 8) == 0)
(i > 9 && strncasecmp(uri, "gopher://", 9) == 0)
(L > 6 && strncasecmp(uri, "ftp://", 6) == 0)
(L > 5 && strncasecmp(uri, "ldap:", 5) == 0)
(L > 5 && strncasecmp(uri, "news:", 5) == 0)
(L > 7 && strncasecmp(uri, "mailto:", 7)) == 0)) {

return 1;

return 0;

Sighed Comparison Vulnerabilities

» Coder attempts to check input length
* But uses a signed integer variable

* Or two different integer types or sizes

— C sometimes converts them both to signed
integers before comparing them

* Following example from Apache

— Led to code execution on Windows and BSD
Unix

Example from Apache

* bufsize is a sighed integer
— Remaining space in the buffer

* r->remaining is signed
— Chunk size from the request

* len_to_read should be the smaller of the two
— Negative chunk size tricks the code into performing a

large memcpy later, because it's cast to
unsigned

len to read = (r->remaining > bufsiz) ? bufsiz : r->remaining;

len read = ap bread(r->connection->client, buffer, len to read);

Integer Conversions

Source
Size/Type

16-bit signed
16-bit signed
16-bit unsigned
16-bit unsigned
32-bit signed
32-bit signed
32-bit unsigned
32-bit unsigned
32-bit signed

Source Value

'—l (Oxfff)
-1 (Oxfff)

65535 (Oxfffr)

65535 (OxfFF)

-1 (Ox i)

1 (OxfFFFFFE)
32768 (0x8000)

32768 (0x8000)

Destination Size/Type Destination Value

.32-bit unsigned
32-bit signed

32-bit unsigned

32-bit signed
16-bit unsigned

16-bit signed

16-bit unsigned

16-bit signed

-40960 (OxfFFf6000) 16-bit signed

4294967295 (OxFFFFFY)
~1 (OxFFFEEE)

65535 (Oxfffe)

65535 (Oxf¥H)
65535 (OxFFi)

-1 (Oxfiff)

132768 (0x8000)

~32768 (0x8000)

24576 (0x6000)

How to Create a Secure Login Script
in PHP and MySQL

function login($email, S$password, $mysqgli) {

// hash the password with the unique salt.
spassword = hash('sha512', $password . $salt);

// Check 1f the password in the database matches
// the password the user submitted.
1f ($db password == $password) ({

// Password 1s correct!

» Link Ch 18l

PHP Hash Comparison
Weakness A Threat To
Websites, Researcher Says

Flaw could allow attackers to compromise user
accounts, WhiteHat Security's Robert Hansen -- aka
"RSnake" -- says in new finding on 'Magic Hash'

vulnerability.

* A hashed password can begin with Oe and

contain only digits (very rare)
— Like 0e12353589661821035685

* PHP reads that as scientific notation

—07123...
— Always zero (link Ch 18j)

Double Free Vulnerabilities

* Freeing the same memory chunk twice

» Can lead to memory corruption and arbitrary
code execution

* Most common when heap buffers are stored
in pointers with global scope

* Good practice: when a global pointer is
freed, set it to Null to prevent it being re-
used

* Prevents dangling pointers

Out-of-Scope Memory Usage
Vulnerabilities

Dangling

+ Use of a memory region ..
before or after it is valid
» Also called "Dangling 1
Pointer” -
— Image from Wikipedia L o
+ Link Ch 18k)

Uninitialized Variable Usage

 Static memory in the .data or .bss
sections of an executable are initialized
to null on program startup

« But memory on the stack or heap is not

* Uninitializes variables will contain data
from previous function calls

* Argument data, saved registers, or local
variables from previous function calls

Uninitialized Variable Usage

» Rare, because they can lead to immediate
program crashes

* 50 they get fixed
* Look for them in code that is rarely used
* Such as handlers for uncommon errors
« Compilers attempt to prevent these errors

Example

* |If data is null

— test is never assigned any value
— But test is still freed

Exploitation

The "uninitialized” data in test is not
random

It comes from previous variables and
function calls

It may be controlled by the attacker

So the free() leads to a controllable

memory write
— Arbitrary code execution

Use After Free Vulnerabilities

« Heap buffers are temporary
— Released with free()
« But a program may use a pointer after

free()

— If more than one variable points to the same
object

* Allows an attacker to write to RAM
— Possible arbitrary code execution

Multithreaded Issues and
Re-Entrant Safe Code

* A global variable is used by more than one
thread, without proper locking

— A variable might be changed unexpectedly by
another thread

* Such issues won't appear until the server
is under heavy load

— May remain as intermittent software bugs
that are never verified

