
CNIT 127: Exploit Development  
 

Ch 14: Protection Mechanisms

Updated
3-25-17

Topics

• Non-Executable Stack
• W^X (Either Writable or Executable

Memory)
• Stack Data Protection
– Canaries
– Ideal Stack Layout
– AAAS: ASCII Armored Address Space
– ASLR: Address Space Layout Randomization

Topics (continued)

• Heap Protections
• Windows SEH Protections

Protection Mechanisms

• General protection mechanisms
• Try to reduce the possibility of a

successful exploit
–Without making the vulnerability disappear

• Protections have flaws and can be
bypassed

Example C Code

Non-Executable Stack

NX-Stack

• Code injected onto the stack will not run
• Now enabled by default in most Linux

distributions, OpenBSD, Mac OS X, and
Windows

• Bypass techniques involve executing code
elsewhere, not on the stack

• The return address can still be over-
written

ret2data

• Place shellcode in the data section
– Using buffered I/O, which places data on the

heap, or some other technique

• Use the corrupted return value to jump to
it

ret2libc

• Use return address to jump directly to
code in libc
– Such as system() on Unix or WinExec() on

Windows

• In a stack-based buffer overflow
– Attacker controls entire stack frame
– Including return address and arguments

• Limitation: range of valid characters
– Can't inject '\x00'

ret2strcpy

• Based on ret2libc
• Place shellcode on the stack
• Use strcpy() to copy NOP sled + shellcode to

a writable and executable memory address
– dest

• Use the return address when strcpy()
finishes to jump to somewhere in the NOP
sled
– dest_ret

ret2strcpy

ret2gets

• Needs only one argument: a writable and
executable memory address
– dest

• Reads NOP sled and shellcode from stdin
• Often controlled by attacker

ret2gets

ret2code

• Generic name for all ways of using code
that already exists in the application

• May be real code that performs function
for the application

• Or just fragments of existing code

Chained ret2code

• Also called chained ret2libc
• Executes a series of calls to existing code
• Three techniques
– Move stack pointer to a user-controlled buffer
– Fix the stack pointer after each return, with

pop-pop-pop-pop-ret
– Return into functions implemented using

pascal or stdcall calling conventions, as used
in Windows, which fix the stack upon return

ret2syscall

• For Linux, the arguments for syscall are in
registers

• Must find two code fragments and chain
them together
– First one pops all the needed arguments from

stack into desired registers, then returns
– Second one issues a syscall

• Easier on Windows, BSD, or Mac OS X than on
Linux
– Syscall arguments on the stack

ret2text

• Jump into the .text section of the
executable binary itself
–Where the program's code lives

• Increasingly important to overcome other
protections
–W^X and ASLR

ret2plt

• Jump to Procedure Linkage Table
– A table of pointers to libc functions
– Present in the memory space for every

dynamically-linked ELF executable

• Limited to the functions called by the
program

ret2dl-resolve

• Jump to ELF's dynamic linker resolver
(ld.so)
– Can perform ret2plt attacks using library

functions that are not used by the target
binary

Limitations of NX Stack

• Still allows return address to be abused to
divert execution flow

• Does not prevent execution of
– Code already present in a process's memory
– Code in other data areas

W^X (Either Writable or
Executable Memory)

W^X Extends NX Stack

• Memory is either
–Writable but not executable

• or
– Non-writable and executable

• So injected code won't run, no matter
where it goes

PaX

• An early Linux implementation of W^X

• Very secure, but never included in
mainstream Linux distributions
– To improve performance and maintainability

NX Bit

• Available in Windows starting with Win XP
SP2

• Called "Data Execution Prevention"
• Opt-in for client versions
• Opt-out for server versions

Limitations of W^X

• Chained ret2code still works
– Using code that's already present, without

changing it

• ret2code works
– As long as there is code present that does

what the attacker wants

• Some memory may still allow W+X
• Can use chained ret2code to write to disk

and then execve() the disk file

Limitations of W^X

• Turning the protection off
–Windows allows this with a single library call

– ZwSetInformationProcess(-1. 22,
'\x32\x00\x00\x00", 4);

– However, this requires injecting null bytes

Limitations of W^X

• Changing a specific memory region from
W^X to W+X
– In Windows
• VirtualProtect(addr, size, 0x40,
writable_address);

• addr and size specify the region of memory to be
made W+X

–A similar function exists in OpenBSD

Limitations of W^X

• X after W
– First write shellcode to writable, non-

executable memory
– Then change it to executable, non-writable

• Create a new W+X region of memory
– Possible in Windows, Linux, and OpenBSD
– On Windows, use VirtualAlloc()
– On Unix, use mmap()

Stack Data Protection

Canaries

• StackGuard was first

• ProPolice is improved version
– Also called SSP (Stack-Smashing Protector)
– Now known as "gcc's Stack-Smashing

Protector" or stack-protector

– Included in gcc

StackGuard Only Protected the Return
Address

• Ineffective, because
attacker can still
change other variables
and the saved EBP
– (Frame pointer)

• StackGuard was
replaced by ProPolice
and Visual Studio's /GS
protection

Canaries

• First canary was NUL canary (0x00000000)
• Replaced by Terminator canary

(x000aff0d)
– Includes four bad characters to stop most

injection
• Null (0x00)
• Line Feed (0X10)
• Carriage Return (0x0d)
• EOF (0xff)

• Random canary

Ideal Stack Layout

• Used by ProPolice and Microsoft's /GS feature
• Places local buffers at the end of the stack

frame
– After other local variables

• Copies function arguments into local
variables
– And relocates them

• Protects the saved EBP and return value with
a canary

Ideal Stack Layout

Compromises for Performance

• Both ProPolice and Visual Studio make
compromises
– They protect some functions, and leave

others unprotected

• Visual Studio only copies vulnerable
arguments
– Leaving the rest unprotected

Vulnerabilities in Ideal Stack Layout

• If a function contains several buffers
– One buffer can overflow into the next one
– Could turn a buffer overflow into a format

string vulnerability

• C structure members can't be rearranged
– May have an unfavorable order

• Functions with a variable number of
arguments
– Can't be placed in ideal layout

Vulnerabilities in Ideal Stack Layout

• Buffers dynamically allocated with alloca()
on the stack are always on top of stack
frame

• There may be something valuable to the
attacker located after the buffer
– In Windows, Exception Registration Record is

stored on the stack
– Other variables can be overwritten, because

cookie is only checked when the function
returns

AAAS: ASCII Armored Address
Space

Null Bytes in Addresses

• Load all shared libraries in addresses
starting with 0x00
– Blocks string-based stack overflows
– Because null bytes terminate strings

• More effective on big-endian
architectures
–Where the 0x00 is at the start of the address

• You can inject one 0x00, at the end of the
string

Example

• You want to execute this Linux command,
which adds a new user account to the
system
– system(“echo gera::0:0::/:/bin/sh
>>/etc/passwd“)

• You can still make one call to system() by
making the last injected byte \x00

AAAS Limitations

• Main executable is not moved to the ASCII
Armored Address Space
– It contains lots of useful code
– Function epilogues
– Programs PLT

ASLR: Address Space Layout
Randomization

Not All Code is Randomized

• Performance suffers from ASLR
– Because it means that a register is

permanently occupied holding the code base
– There aren't enough registers available in a

32-bit OS to do that without slowing the
system

Ways to Defeat ASLR

• Use ret2gets
– Specify location to put shellcode

• Make the application supply the address
for you
– Useful addresses may be stored in registers or

on the stack

linux-gate.so

• A table of pointers used for system calls

• Sometimes placed at a constant location
in Linux distributions
– Link Ch 14a

Insufficient Randomization

• If there are only 8 bits of entropy, an
attack has 1/256 chance of working just
by luck

• Memory sections may maintain a fixed
distance from each other, moving
together by a fixed displacement
– So only one guess is needed

Finding Addresses

• Local privilege escalation
– May be able to access "proc/<pid>/maps"
– The memory map

• Also, brute-forcing a 16-bit value is not
impossible
– 65,536 runs

• Even a 24-bit value can be brute-forced
– 16 million runs

Finding Addresses

• Format string exploits reveal contents of
RAM
– Such as the memory map

• Several RPC calls leak memory addresses
in handles that are returned to the client

• Multithreaded Windows applications
– Address space must be the same for all the

threads in a process

– More chances to find an address

fork()

• Unix processes often use fork() to clone
themselves

• But the new fork has the same memory
layout

Heap Protections

Action of Free()

• Must write to the forward and reverse pointers
• If we can overflow a chunk, we can control

those writes
• Write to arbitrary RAM
– Image from mathyvanhoef.com, link Ch 5b

Safe unlink()

• Checks integrity of pointers before freeing
a chunk

• Makes sure that these two conditions are
true before freeing chunk B

Implementations in Various OS's

• Safe unlink() is implemented in
– glibc since 2004

–Windows since Win XP SP2

Unprotected Heap Operations

• Not all heap operations are protected by
Safe unlink()

• There are several complicated exploit
techniques in Malloc Maleficarum
– Exploiting code that adds a chunk, not free()

– Link Ch 14b

Heap Exploits on Windows

• Unsafe Unlinking
– Overwrite back and forward pointers

carefully

– So that the check passes

– But the pointers still do desirable things when
the chunk is freed

– Allows a write to arbitrary RAM

Heap Exploits on Windows

• Chunk-on-lookaside overwrite
–Windows lookaside list records free chunks

– Singly-linked, no security checks

– Allows a write to arbitrary RAM

• Windows Vista and later no longer use
lookaside lists
– Instead they use a Low Fragmentation Heap

Heap Cookies in Win XP

• Windows XP SP2 inserts an 8-bit random
cookie into each heap chunk's header

• When a chunk is freed, the cookie is
checked, but if the check fails,
RtlFreeHeap() just exits without doing
anything
– Instead of halting program execution

• So just try 256 times, until you get lucky

Heap Cookies in Vista and Later

• Eight random bytes are generated when a
heap is created

• Used with XOR to validate each chunk's
header

• Other integrity checks are also used
• Some degree of ASLR for the heap
• This is strong heap protection

Windows 8

• Even more protections (link Ch 14c)

Even More Defenses

And Even More

• Cookies in the Kernel Pool
– Also protects lookaside lists

• Non-executable kernel pool
– To thwart heap spraying

• Much improved randomization
– Especially with Ivy Bridge CPUs
– RDRAND – Hardware Random Number

Generator

RDRAND

• Cannot audit the hardware random-number
generator

• FreeBSD refused to use it
– Links Ch 14d, 14e

Windows 10 Defenses
(Link Ch 14f)

Windows 10 Defenses

Windows 10 Defenses

OpenBSD and FreeBSD Heap

• Used phkmalloc() in older versions
– Doesn't use linked lists
– Doesn't intermix control information with user

data

• OpenBSD v 3.8 and later
–malloc() uses mmap()
– Allocates randomly located chunks of RAM

(using ASLR)
– No two chunks can ever be adjacent

Heap Exploits

• Overwriting control structures in the heap
is becoming very difficult

• But sometimes there may be something
else stored after a heap chunk that's
useful
– Like a function pointer

– In C++, the vtable contains pointers and may
sometimes be overwritten

Windows SEH Protections

SEH Protections

• Registers are zeroed before calling the
handler
– So no address information is available to it

• Exception handler can't be placed in the
stack
– So attacker can't inject code on the stack and

jump to it

• PE binaries (.exe and .dll files) compiled with  
 /SafeSEH
– Whitelist permitted exception handlers

SEH Protections

• Memory sections not compiled with  
/SafeSEH still have some protections
– Handlers must be in executable RAM

(enforced by either hardware or software)

• But DEP isn't in effect for every executable

SEH Exploitation Tools

• EEREAP
– Reads a memory dump
– Finds SEH trampoline code, like pop-pop-ret

• pdest
– Freezes a process and hunts through its RAM to

find good trampoline code

• SEHInspector
– Inspects a DLL or EXE
– Tells you if /SafeSEH or ASLR are in effect
– Lists all valid exception handlers

