CNIT 127: Exploit Development

Ch 14: Protection Mechanisms

The

Shellcoders
H:l.n(ll)m)I\'

Updated
3-25-17

Topics

 Non-Executable Stack

« W*X (Either Writable or Executable
Memory)

e Stack Data Protection

— Canaries

— Ideal Stack Layout

— AAAS: ASCII Armored Address Space

— ASLR: Address Space Layout Randomization

Topics (continued)

« Heap Protections
* Windows SEH Protections

Protection Mechanisms

* General protection mechanisms

* Try to reduce the possibility of a

successful exploit
— Without making the vulnerability disappear

* Protections have flaws and can be
bypassed

Example C Code

Standard Stack Layout
(without protections or

optimisations)

#include <stdio.h>
#include <string.h>
LOW RAM
, var2 (4 bytes)
int function(char =arg) {
int varl;
-har buf [80] buf (80 bytes)
int var; varl (4 bytes)
printf("arg:%p varl:%x var2:%x buf:%x\n",
&varl, &var2, buf)’ Saved EBP
nt main(int ¢, charskv) { Saved Return Address
function(v(1]);
HIGH RAM

Non-Executable Stack

NX-Stack

Code injected onto the stack will not run

Now enabled by default in most Linux
distributions, OpenBSD, Mac OS X, and
Windows

Bypass techniques involve executing code
elsewhere, not on the stack

The return address can still be over-
written

ret2data

» Place shellcode in the data section
— Using buffered |1/0, which places data on the
heap, or some other technique

» Use the corrupted return value to jump to
it

ret2libc

» Use return address to jump directly to

code in libc
— Such as system() on Unix or WinExec() on
Windows

* In a stack-based buffer overflow
— Attacker controls entire stack frame
— Including return address and arguments

* Limitation: range of valid characters
— Can't inject \x00

ret2strcpy

Based on ret2libc
Place shellcode on the stack

Use strcpy() to copy NOP sled + shellcode to
a writable and executable memory address
— dest

Use the return address when strcpy()
finishes to jump to somewhere in the NOP
sled

— dest_ret

LOW RAM

HIGH RAM

ret2strcpy

Before Overflow ret2strcpy
var2 (4 bytes) var2 (4 bytes)
buf (80 bytes) buf (80 bytes)
varl (4 bytes) JUNK

Saved EBP JUNK
Saved Return Address &strcpy (4 bytes)

dest_ret (4 bytes)

dest (4 bytes)

src (4 bytes)

ret2gets

* Needs only one argument: a writable and

executable memory address
— dest

 Reads NOP sled and shellcode from stdin
« Often controlled by attacker

LOW RAM

HIGH RAM

ret2gets

Before Overflow ret2strcpy
var2 (4 bytes) var2 (4 bytes)
buf (80 bytes) buf (80 bytes)
varl (4 bytes) JUNK

Saved EBP JUNK
Saved Return Address &gets (4 bytes)
dest (4 bytes)

dest (4 bytes)

ret2code

* Generic name for all ways of using code
that already exists in the application

* May be real code that performs function
for the application

* Or just fragments of existing code

Chained ret2code

* Also called chained ret2libc
» Executes a series of calls to existing code

* Three techniques
— Move stack pointer to a user-controlled buffer
— Fix the stack pointer after each return, with
pop-pop-pop-pop-ret
— Return into functions implemented using
pascal or stdcall calling conventions, as used
in Windows, which fix the stack upon return

ret2syscall

* For Linux, the arguments for syscall are in
registers

* Must find two code fragments and chain

them together

— First one pops all the needed arguments from
stack into desired registers, then returns

— Second one issues a syscall

* Easier on Windows, BSD, or Mac OS X than on

Linux
— Syscall arguments on the stack

ret2text

« Jump into the .text section of the

executable binary itself
— Where the program’s code lives

* Increasingly important to overcome other
protections
— W”X and ASLR

ret2plt

» Jump to Procedure Linkage Table
— A table of pointers to libc functions
— Present in the memory space for every
dynamically-linked ELF executable

* Limited to the functions called by the
program

ret2dl-resolve

« Jump to ELF's dynamic linker resolver
(ld.so)

— Can perform ret2plt attacks using library
functions that are not used by the target
binary

Limitations of NX Stack

« Still allows return address to be abused to
divert execution flow

* Does not prevent execution of
— Code already present in a process's memory
— Code in other data areas

W”X (Either Writable or
Executable Memory)

W”X Extends NX Stack

* Memory is either
— Writable but not executable

* Or
— Non-writable and executable

* S0 injected code won't run, no matter
where it goes

PaX

* An early Linux implementation of W"X

* Very secure, but never included in
mainstream Linux distributions

— To improve performance and maintainability

NX Bit

Available in Windows starting with Win XP
SP2

Called "Data Execution Prevention®
Opt-in for client versions
Opt-out for server versions

Limitations of WX

Chained ret2code still works
— Using code that's already present, without
changing it

ret2code works
— As long as there is code present that does
what the attacker wants

Some memory may still allow W+X

Can use chained ret2code to write to disk
and then execve() the disk file

Limitations of WX

» Turning the protection off
— Windows allows this with a single library call

— ZwSetInformationProcess(-1. 22,
'\x32\x00\x00\x00", 4);

— However, this requires injecting null bytes

Limitations of WX

» Changing a specific memory region from
W”X to W+X
— In Windows

* VirtualProtect (addr, size, 0x40,
writable address);

« addr and size specify the region of memory to be
made W+X

— A similar function exists in OpenBSD

Limitations of WX

e« X after W

— First write shellcode to writable, non-
executable memory

— Then change it to executable, non-writable
» Create a new W+X region of memory

— Possible in Windows, Linux, and OpenBSD

— On Windows, use VirtualAlloc()

— On Unix, use mmap ()

Stack Data Protection

Canaries

 StackGuard was first

* ProPolice is improved version
— Also called SSP (Stack-Smashing Protector)

— Now known as "gcc’'s Stack-Smashing
Protector” or stack-protector

— Included in gcc

StackGuard Only Protected the Return

Address

» Ineffective, because Stack Guara
attacker can still TR
change other variables o0t (30 bries)
and the saved EBP varl (4 bytes)
— (Frame pointer) Saved EBP

» StackGuard was Canary
replaced by ProPolice Saved Return Address
and Visual Studio's /GS

protection

Canaries

 First canary was NUL canary (0x00000000)

* Replaced by Terminator canary
(x000aff0d)

— Includes four bad characters to stop most
injection
* Null (0x00)
* Line Feed (0X10)
 Carriage Return (0x0d)
« EOF (0xff)

 Random canary

|deal Stack Layout

Used by ProPolice and Microsoft's /GS feature

Places local buffers at the end of the stack
frame

— After other local variables

Copies function arguments into local

variables
— And relocates them

Protects the saved EBP and return value with
a canary

ldeal Stack Layout

ProPolice and /GS

arg copy (4 bytes)
var2 (4 bytes)
varl (4 bytes)

buf (80 bytes)

Saved EBX

Saved EBP

Saved Return Address

arg (not used) (4 bytes)

Compromises for Performance

 Both ProPolice and Visual Studio make

compromises
— They protect some functions, and leave

others unprotected

 Visual Studio only copies vulnerable

arguments
— Leaving the rest unprotected

Vulnerabilities in Ideal Stack Layout

 |[f a function contains several buffers
— One buffer can overflow into the next one
— Could turn a buffer overflow into a format
string vulnerability

» C structure members can't be rearranged
— May have an unfavorable order
* Functions with a variable humber of

arguments
— Can't be placed in ideal layout

Vulnerabilities in Ideal Stack Layout

» Buffers dynamically allocated with alloca()
on the stack are always on top of stack

frame

* There may be something valuable to the
attacker located after the buffer
— In Windows, Exception Registration Record is

stored on the stack
— Other variables can be overwritten, because

cookie is only checked when the function
returns

AAAS: ASCII Armored Address
Space

Null Bytes in Addresses

 Load all shared libraries in addresses
starting with 0x00
— Blocks string-based stack overflows
— Because null bytes terminate strings
* More effective on big-endian
architectures
— Where the 0x00 is at the start of the address
* You can inject one 0x00, at the end of the
string

Example

* You want to execute this Linux command,
which adds a new user account to the
system
—system(“echo gera::0:0::/:/bin/sh

>>/etc/passwd”)

* You can still make one call to system() by
making the last injected byte \x00

Defeating AAAS

Address
Oxbfbf1234

Payload

End command
with comment

New frame
pointer

system() +3 (after
mov ebp, esp)

AAAS Limitations

 Main executable is not moved to the ASCII

Armored Address Space

— It contains lots of useful code
— Function epilogues

— Programs PLT

ASLR: Address Space Layout
Randomization

Not All Code is Randomized

 Performance suffers from ASLR

— Because it means that a register is
permanently occupied holding the code base

— There aren't enough registers available in a
32-bit OS to do that without slowing the
system

Ways to Defeat ASLR

» Use ret2gets
— Specify location to put shellcode

» Make the application supply the address
for you

— Useful addresses may be stored in registers or
on the stack

linux-gate.so

» A table of pointers used for system calls

» Sometimes placed at a constant location
in Linux distributions

— Link Ch 14a

Insufficient Randomization

* If there are only 8 bits of entropy, an
attack has 1/256 chance of working just

by luck

* Memory sections may maintain a fixed
distance from each other, moving
together by a fixed displacement

— S0 only one guess is heeded

Finding Addresses

» Local privilege escalation
— May be able to access “proc/<pid>/maps”
— The memory map

* Also, brute-forcing a 16-bit value is not
impossible
— 65,536 runs

« Even a 24-bit value can be brute-forced

— 16 million runs

Finding Addresses

* Format string exploits reveal contents of
RAM

— Such as the memory map

* Several RPC calls leak memory addresses
in handles that are returned to the client
* Multithreaded Windows applications

— Address space must be the same for all the
threads in a process

— More chances to find an address

fork()

» Unix processes often use fork() to clone
themselves

* But the new fork has the same memory
layout

Heap Protections

Action of Free()

* Must write to the forward and reverse pointers

* |[f we can overflow a chunk, we can control
those writes

* Write to arbitrary RAM
— Image from mathyvanhoef.com, link Ch 5b

Safe unlink()

» Checks integrity of pointers before freeing
a chunk

 Makes sure that these two conditions are
true before freeing chunk B

B->prev->next ==
B->next->prev == B

Implementations in Various OS's

« Safe unlink() is implemented in
— glibc since 2004
— Windows since Win XP SP2

Unprotected Heap Operations

* Not all heap operations are protected by
Safe unlink()

* There are several complicated exploit
techniques in Malloc Maleficarum

— Exploiting code that adds a chunk, not free()
— Link Ch 14b

L) https://sploitfun.wordpress.com/2015/03/04/heap-overflow-using-malloc-maleficarum/

Heap overflow using Malloc Maleficarum

Heap Exploits on Windows

» Unsafe Unlinking

— Overwrite back and forward pointers
carefully

— S0 that the check passes

— But the pointers still do desirable things when
the chunk is freed

— Allows a write to arbitrary RAM

Heap Exploits on Windows

* Chunk-on-lookaside overwrite
— Windows lookaside list records free chunks
— Singly-linked, no security checks
— Allows a write to arbitrary RAM

* Windows Vista and later no longer use
lookaside lists

— Instead they use a Low Fragmentation Heap

Heap Cookies in Win XP

* Windows XP SP2 inserts an 8-bit random
cookie into each heap chunk’s header

 When a chunk is freed, the cookie is
checked, but if the check fails,
RtlFreeHeap() just exits without doing
anything

— Instead of halting program execution

* S50 just try 256 times, until you get lucky

Heap Cookies in Vista and Later

» Eight random bytes are generated when a
neap is created

 Used with XOR to validate each chunk's
neader

* Other integrity checks are also used
* Some degree of ASLR for the heap
* This is strong heap protection

Windows 8

Even more protections (link Ch 14c¢)

lm_mm Windows 8 (RP)

Heap Handle Protection

Virtual Memory (x] (]
Non-Determinism

FrontEndStatusBitmap (x (x]
LFH Non-Determinism (x] (x]
Fast Fail
Guard Pages [x] £3)
Arbitrary Free Protection (x] 3
Exception Handler 3] [x]

Removal

Even More Defenses

m_lmm Windows 8 (CP)

Safe Unlinking

Safe Linking [x] (<]
Pool Cookie
Lookaside Chunks 3] (x]
Lookaside Pages (]
PendingFrees List (x] (x]
Cache Aligned
Allocations
Poollndex Validation (x] (x]
Encoded Process Pointer (x] (x]
NX Non-Paged Pool 3] (]

* Safe Unlinking: Windows 8 (RP) also addresses the ListHeads Flink attack

And Even More

» Cookies in the Kernel Pool
— Also protects lookaside lists

* Non-executable kernel pool
— To thwart heap spraying

* Much improved randomization
— Especially with Ivy Bridge CPUs

— RDRAND - Hardware Random Number
Generator

RDRAND

“We cannot trust” Intel and Via’s chip-
based crypto, FreeBSD developers say

Following NSA leaks from Snowden, engineers lose faith in hardware randomness.

by Dan Goodin - Dec 10, 2013 5:00am PST
K3 Share E !.":':I

 Cannot audit the hardware random-number
generator

 FreeBSD refused to use it
— Links Ch 14d, 14e

Windows 10 Defenses
(Link Ch 14f)

Table 3. Threats and Windows 10 mitigations

Threat Windows 10 mitigation

"Man in the middle" attacks, when an

attacker reroutes communications Client connections to the Active Directory Domain Services
between two users through the default SYSVOL and NETLOGON shares on domain
attacker's computer without the controllers now require SMB signing and mutual
knowledge of the two communicating authentication (such as Kerberos).

users

All certified PCs include a UEFI with Secure Boot, which
requires signed firmware for updates to UEFI and Option
ROMs.

Firmware bootkits replace the
firmware with malware.

UEFI Secure Boot verifies Windows bootloader integrity to
ensure that no malicious operating system can start
before Windows.

Bootkits start malware before Windows
starts.

Windows 10 Defenses

System or driver rootkits start kernel-
level malware while Windows is
starting, before Windows Defender
and antimalware solutions can start.

User-level malware exploits a
vulnerability in the system or an
application and owns the device.

Windows Trusted Boot verifies Windows boot components;
Microsoft drivers; and the Early Launch Antimalware
(ELAM) antimalware driver, which verifies non-Microsoft
drivers.

Measured Boot runs in parallel with Trusted Boot and can
provide information to a remote server that verifies the

boot state of the device to help ensure Trusted Boot and
other boot components successfully checked the system.

Improvements to address space layout randomization
(ASLR), Data Execution Prevention (DEP), the heap
architecture, and memory-management algorithms reduce
the likelihood that vulnerabilities can enable successful
exploits.

Protected Processes isolates nontrusted processes from
each other and from sensitive operating system
components.

VBS, built on top of Microsoft Hyper-V, protects sensitive
Windows processes from the Windows operating system
by isolating them from user mode processes and the
Windows kernel.

Configurable code integrity enforces administrative
policies to select exactly which applications are allowed to
run in user mode. No other applications are permitted to
run.

Windows 10 Defenses

Users download dangerous software

(for example, a seemingly legitimate

application with an embedded Trojan
horse) and run it without knowledge

of the risk.

Malware exploits a vulnerability in a
browser add-on.

A website that includes malicious code
exploits a vulnerability in Microsoft
Edge and IE to run malware on the
client PC.

The SmartScreen Application Reputation feature is part of
the core operating system; Microsoft Edge and Internet
Explorer can use this feature either to warn users or to
block users from downloading or running potentially
malicious software.

Microsoft Edge is a Universal App that does not run older
binary extensions, including Microsoft Active X and
Browser Helper Objects (BHO) frequently used for toolbars,
thus eliminating these risks.

Both Microsoft Edge and IE include Enhanced Protected
Mode, which uses AppContainer-based sandboxing to
protect the system from vulnerabilities that may be
discovered in the extensions running in the browser (for
example, Adobe Flash, Java) or the browser itself.

OpenBSD and FreeBSD Heap

» Used phkmalloc() in older versions
— Doesn't use linked lists

— Doesn't intermix control information with user
data

* OpenBSD v 3.8 and later

— malloc() uses mmap()

— Allocates randomly located chunks of RAM
(using ASLR)

— No two chunks can ever be adjacent

Heap Exploits

» Overwriting control structures in the heap
is becoming very difficult

* But sometimes there may be something
else stored after a heap chunk that'’s
useful

— Like a function pointer

— In C++, the vtable contains pointers and may
sometimes be overwritten

Windows SEH Protections

SEH Protections

» Registers are zeroed before calling the
handler
— S0 no address information is available to it
» Exception handler can't be placed in the

stack
— So attacker can't inject code on the stack and
jump to it

* PE binaries (.exe and .dll files) compiled with

/SafeSEH
— Whitelist permitted exception handlers

SEH Protections

* Memory sections not compiled with
/SafeSEH still have some protections

— Handlers must be in executable RAM
(enforced by either hardware or software)

« But DEP isn't in effect for every executable

SEH Exploitation Tools

 EEREAP

— Reads a memory dump
— Finds SEH trampoline code, like pop-pop-ret

» pdest
— Freezes a process and hunts through its RAM to
find good trampoline code

» SEHInspector
— Inspects a DLL or EXE
— Tells you if /SafeSEH or ASLR are in effect
— Lists all valid exception handlers

