
Practical Malware Analysis
Ch 9: OllyDbg

Updated 9-14-21

History

• OllyDbg was developed more than a
decade ago

• First used to crack software and to
develop exploits

• The OllyDbg 1.1 source code was
purchased by Immunity and rebranded as
Immunity Debugger

• The two products are very similar

Loading Malware

Ways to Debug Malware

• You can load EXEs or DLLs directly into
OllyDbg

• If the malware is already running, you can
attach OllyDbg to the running process

Opening an EXE

• File, Open

• Add command-line arguments if needed

• OllyDbg will stop at the entry point,

WinMain, if it can be determined

• Otherwise it will break at the entry point

defined in the PE Header

– Configurable in Options, Debugging Options

Attaching to a Running Process

• File, Attach

• OllyDbg breaks in and pauses the program

and all threads

– If you catch it in DLL, set a breakpoint on

access to the entire code section to get to
the interesting code

Reloading a File

• Ctrl+F2 reloads the current executable

• F2 sets a breakpoint

The OllyDbg Interface

Disassembler

Highlight: next instruction

to be executed

Registers

Stack
Memory

dump

Modifying Data

• Disassembler window

– Press spacebar

• Registers or Stack

– Right-click, modify

• Memory dump

– Right-click, Binary, Edit

– Ctrl+G to go to a memory location

– Right-click a memory address in another pane

and click "Follow in dump"

Memory Map

View, Memory Map

• EXE and DLLs are identified

• Double-click any row to show a memory dump

• Right-click, View in Disassembler

Rebasing

• Rebasing occurs when a module is not loaded
at its preferred base address

• PE files have a preferred base address

– The image base in the PE header

– Usually the file is loaded at that address

– Most EXEs are designed to be loaded at

0x00400000

• EXEs that support Address Space Layout
Randomization (ASLR) will often be relocated

DLL Rebasing

• DLLs are more commonly relocated

– Because a single application may import many

DLLs

–Windows DLLs have different base addresses

to avoid this

– Third-party DLLs often have the same

preferred base address

Absolute v. Relative Addresses

• The first 3 instructions will work fine if
relocated because they use relative
addresses

• The last one has an absolute address that
will be wrong if the code is relocated

Fix-up Locations

• Most DLLS have a list of fix-up locations in
the .reloc section of the PE header

– These are instructions that must be changed

when code is relocated

• DLLs are loaded after the EXE and in any
order

• You cannot predict where DLLs will be
located in memory if they are rebased

• Example .reloc section on next slide

DLL Rebasing

• DLLS can have their .reloc removed

– Such a DLL cannot be relocated

– Must load at its preferred base address

• Relocating DLLs is bad for performance

– Adds to load time

– So good programmers specify non-default

base addresses when compiling DLLs

Example of DLL Rebasing 
Olly Memory Map

• DLL-A and DLL-B prefer location
0x100000000

IDA Pro

• IDA Pro is not attached to a real running
process

• It doesn't know about rebasing

• If you use OllyDbg and IDA Pro at the same

time, you may get different results

– To avoid this, use the "Manual Load" option in

IDA Pro

– Specify the virtual base address manually

Viewing Threads and Stacks

• View, Threads

• Right-click a thread to "Open in CPU", kill

it, etc.

Each Thread Has its Own Stack

• Visible in Memory Map

ASLR is Fading

• Address Space Layout Randomization

• "ASLR is fundamentally flawed in

sandboxed environments such as
JavaScript and future defenses should
not rely on randomized virtual
addresses as a building block."

• https://www.theregister.com/
2021/02/26/chrome_aslr_bypass/

Executing Code

Run and Pause

• You could Run a program and click Pause
when it's where you want it to be

• But that's sloppy and might leave you
somewhere uninteresting, such as inside
library code

• Setting breakpoints is much better

Run and Run to Selection

• Run is useful to resume execution after
hitting a breakpoint

• Run to Selection will execute until just
before the selected instruction is
executed

– If the selection is never executed, it will run

indefinitely

Execute till Return

• Pauses execution until just before the
current function is set to return

• Can be useful if you want to finish the
current function and stop

• But if the function never ends, the
program will continue to run indefinitely

Execute till User Code

• Useful if you get lost in library code
during debugging

• Program will continue to run until it hit
compiled malware code

– Typically the .text section

Stepping Through Code

• F7 -- Single-step (also called step-into)

• F8 -- Step-over

– Stepping-over means all the code is executed,

but you don't see it happen

• Some malware is designed to fool you, by
calling routines and never returning, so
stepping over will miss the most
important part

9a

Breakpoints

Types of Breakpoints

• Software breakpoints

• Hardware breakpoints

• Conditional breakpoints

• Breakpoints on memory

• F2 – Add or remove a breakpoint

Viewing Active Breakpoints

• View, Breakpoints, or click B icon on
toolbar

Saving Breakpoints

• When you close OllyDbg, it saves your
breakpoints

• If you open the same file again, the
breakpoints are still available

Software Breakpoints

• Useful for string decoders

• Malware authors often obfuscate strings

–With a string decoder that is called before

each string is used

String Decoders

• Put a breakpoint at the end of the
decoder routine

• The string becomes readable on the stack 
Each time you press Play in OllyDbg, the
program will execute and will break when
a string is decoded for use

• This method will only reveal strings as
they are used

Conditional Breakpoints

• Breaks only when a condition is true

• Ex: Poison Ivy backdoor

– Poison Ivy allocates memory to house the

shellcode it receives from Command and
Control (C&C) servers

– Most memory allocations are for other
purposes and uninteresting

– Set a conditional breakpoint at the
VirtualAlloc function in Kernel32.dll

Normal Breakpoint

• Put a standard breakpoint at the start of
the VirtualAlloc function

• Here's the stack when it hits, showing five
items:

– Return address

– 4 parameters (Address, Size, AllocationType,

Protect)

Conditional Breakpoint

Hardware Breakpoints

• Don't alter code, stack, or any target
resource

• Don't slow down execution

• But you can only set 4 at a time

• Click Breakpoint, "Hardware, on Execution"

• You can set OllyDbg to use hardware

breakpoints by default in Debugging Options

– Useful if malware uses anti-debugging

techniques

Memory Breakpoints

• Code breaks on access to specified
memory location

• OllyDbg supports software and hardware
memory breakpoints

• Can break on read, write, execute, or any
access

• Right-click memory location, click
Breakpoint, "Memory, on Access"

Memory Breakpoints

• You can only set one memory breakpoint
at a time

• OllyDbg implements memory breakpoints
by changing the attributes of memory
blocks

• This technique is not reliable and has
considerable overhead

• Use memory breakpoints sparingly

When is a DLL Used?

9b

Loading DLLs

loaddll.exe

• DLLs cannot be executed directly

• OllyDbg uses a dummy loaddll.exe

program to load them

• Breaks at the DLL entry point DLLMain

once the DLL is loaded

• Press Play to run DLLMain and initialize

the DLL for use

Demo
• Get OllyDbg 1.10, NOT 2.00 or 2.01

– Link Ch 9a

• Use Win 2016 Server, 64 bit

• In OllyDbg, open

• C:\Windows\SysWOW64\ws2_32.dll

• Click Yes at this box

Demo: Calling DLL Exports

• Click Debug, Call DLL Export – it fails
because DLLMain has not yet been run

• Reload the DLL (Ctrl+F2), click Run
button once

• Click Debug, Call DLL Export – now it
works

• Image on next slide

Demo: Running ntohl

• Converts a 32-bit number from network to
host byte order

• Click argument 1, type in 7f000001

– 127.0.0.1 in "network" byte order

• Click "Follow in Disassembler" to see the
code

• Click "Call" to run the function

• Answer in EAX

Tracing

Tracing

• Powerful debugging technique

• Records detailed execution information

• Types of Tracing

– Standard Back Trace

– Call Stack Trace

– Run Trace

Standard Back Trace

• You move through the disassembler with
the Step Into and Step Over buttons

• OllyDbg is recording your movement

• Use minus key on keyboard to see previous

instructions

– But you won't see previous register values

• Plus key takes you forward

– If you used Step Over, you cannot go back and

decide to step into

Call Stack Trace

• Views the execution path to a given
function

• Click View, Call Stack

• Displays the sequence of calls to reach

your current location

Demo from PMA 401

• Simple guessing game

• Wrong answer produces an insult

Entire main() in OllyDbg

Step into puts

• Press F7 twice

• Click View, Call Stack

Step into again

• Click View, CPU

• Press F7 three times

• Click View, Call Stack

• New function appears at top

Return

• Click View, CPU

• Press F7 22 times, until the RETN and

execute it

• Click View, Call Stack

A Deeper Call Stack

Run Trace

• Code runs, and OllyDbg saves every
executed instruction and all changes to
registers and flags

• Highlight code, right-click, Run Trace,
Add Selection

• After code executes, View, Run Trace

– To see instructions that were executed

– + and - keys to step forward and backwards

Demo: Run Trace of 00000.exe

• Highlight code, right-click, Run Trace,
Add Selection

• Run code

• Step back with - and forward with +

Demo: Run Trace of 00000.exe

Trace Into and Trace Over

• Buttons below "Options"

• Easier to use than Add Selection

• If you don't set breakpoints, OllyDbg will

attempt to trace the entire program,
which could take a long time and a lot of
memory

Debug, Set Condition

• Traces until a
condition hits

• This condition
catches Poison
Ivy shellcode,
which places
code in
dynamically
allocated
memory below
0x400000

Exception Handling

When an Exception Occurs

• OllyDbg will stop the program

• You have these options to pass the

exception into the program:

– Shift+F7 Step into exception

– Shift+F8: Step over exception

– Shift+F9: Run exception handler

• Often you just ignore all exceptions in
malware analysis

–We aren't trying to fix problems in code

Patching

Binary Edit

Fill

• Fill with 00

• Fill with NOP (0x90)

– Used to skip instructions

– e.g. to force a branch

Saving Patched Code

• Right-click disassembler window after
patching

– Copy To Executable, All Modifications, Save

File

– Copy All

• Right-click in new window

– Save File

Analyzing Shellcode

Undocumented technique

Easy Way to Analyze Shellcode

• Copy shellcode from a hex editor to
clipboard

• Within memory map, select a region of
type "Priv" (Private memory)

• Double-click rows in memory map to show a
hex dump

– Find a region of hundreds of consecutive zeroes

• Right-click chosen region in Memory Map,
Set Access, Full Access (to clear NX bit)

Analyzing Shellcode

• Highlight a region of zeroes, Binary, Binary
Paste

• Set EIP to location of shellcode

– Right-click first instruction, New Origin Here

Assistance Features

Log

• View, Log

– Shows steps to reach here

Watches Window
• View, Watches

–Watch the value of an expression

– Press SPACEBAR to set expression

– OllyDbg Help, Contents

• Instructions for Evaluation of Expressions

Labeling

• Label subroutines and loops

– Right-click an address, Label

Plug-ins

Recommended Plugins
• OllyDump

– Dumps debugged process to a PE file

– Used for unpacking

• Hide Debugger

– Hides OllyDbg from debugger detection

• Command Line

– Control OllyDbg from the command line

– Simpler to just use WinDbg

• Bookmarks

– Included by default in OllyDbg

– Bookmarks memory locations

Scriptable Debugging

Immunity Debugger (ImmDbg)

• Unlike OllyDbg, ImmDbg employs Python
scripts and has an easy-to-use API

• Scripts are located in the PyCommands
subdirectory under the install directory of
ImmDbg

• Easy to create custom scripts for ImmDbg

9c

