
Practical Malware Analysis
Ch 10: Kernel Debugging with

WinDbg

Updated 10-29-19

WinDbg v. OllyDbg

• OllyDbg is the most popular user-mode
debugger for malware analysts

• WinDbg can be used in either user-mode
or kernel-mode

• This chapter explores ways to use WinDbg
for kernel debugging and rootkit analysis

Drivers and Kernel Code

Device Drivers

• Windows device drivers allow third-party
developers to run code in the Windows kernel

• Drivers are difficult to analyze
– They load into memory, stay resident, and

respond to requests from applications

• Applications don't directly access kernel
drivers
– They access device objects which send requests

to particular devices

Devices

• Devices are not physical hardware
components
• They are software representations of

those components
• A driver creates and destroys devices,

which can be accessed from user space

Example: USB Flash Drive

• User plugs in flash drive
• Windows creates the F: drive device object
• Applications can now make requests to the

F: drive (such as read and write)
– They will be sent to the driver for that USB

flash drive

• User plugs in a second flash drive
– It may use the same driver, but applications

access it through the G: drive

Loading DLLs (Review)

• DLLs are loaded into processes
• DLLs export functions that can be used

by applications
• Using the export table
• When a function loads or unloads the

library, it calls DLLMain
• Link Ch 10n

Loading Drivers

• Drivers must be loaded into the kernel
–When a driver is first loaded, its DriverEntry

procedure is called
– To prepare callback objects
– Just like DLLMain for DLLs
– Links Ch 10n, 10o, 10p

 9

DLLs v. Drivers

• DLL
• Loads into memory when a process is launched
• Executes DLLMain at loadtime
• Prepares the export table

• Driver
• Loads into kernel when hardware is added
• Executes DriverEntry at loadtime
• Prepares callback functions and callback

objects

DriverEntry

• DLLs expose functionality through the export
table; drivers don't

• Drivers must register the address for callback
functions
– They will be called when a user-space software

component requests a service
– DriverEntry routine performs this registration
– Windows creates a driver object structure, passes it

to DriverEntry which fills it with callback functions
– DriverEntry then creates a device that can be

accessed from user-land

Example: Normal Read

• Normal read request
– User-mode application obtains a file handle

to device
– Calls ReadFile on that handle
– Kernel processes ReadFile request
– Invokes the driver's callback function handling

I/O

Malicious Request

• Most common request from malware is
DeviceIoControl
– A generic request from a user-space module

to a device managed by a driver
– User-space program passes in an arbitrary-

length buffer of input data
– Received an arbitrary-length buffer of data as

output

 15

Ntoskrnl.exe & Hal.dll

• Malicious drivers rarely control hardware
• They interact with Ntoskrnl.exe & Hal.dll
– Ntoskrnl.exe has code for core OS functions
– Hal.dll has code for interacting with main

hardware components

• Malware will import functions from one or
both of these files so it can manipulate
the kernel

Setting Up Kernel Debugging

VMware

• In the virtual machine, enable kernel
debugging

• Configure a virtual serial port between VM
and host

• Configure WinDbg on the host machine

Boot.ini

• The book activates kernel debugging by
editing Boot.ini

• But Microsoft abandoned that system
after Windows XP

• The new system uses bcdedit

bcdedit

Installing WinDbg

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/

Installing WinDbg

 24

Run LiveKD

 25

Using WinDbg

• Command-Line Commands

Reading from Memory

• dx addressToRead
• x can be
– da Displays as ASCII text
– du Displays as Unicode text
– dd Displays as 32-bit double words

• da 0x401020
– Shows the ASCII text starting at 0x401020

Editing Memory

• ex addressToWrite dataToWrite
• x can be
– ea Writes as ASCII text
– eu Writes as Unicode text
– ed Writes as 32-bit double words

Using Arithmetic Operators

• Usual arithmetic operators + - / *
• dwo reveals the value at a 32-bit location

pointer
• du dwo (esp+4)
– Shows the first argument for a function, as a

wide character string

Setting Breakpoints

• bp sets breakpoints
• You can specify an action to be performed

when the breakpoint is hit
• g tells it to resume running after the

action
• bp GetProcAddress "da dwo(esp+8); g"
– Breaks when GetProcAddress is called, prints

out the second argument, and then continues
– The second argument is the function name

No Breakpoints with LiveKD

• LiveKD works from a memory dump
• It's read-only
• So you can't use breakpoints

Listing Modules
• lm
– Lists all modules loaded into a process

• Including EXEs and DLLs in user space
• And the kernel drivers in kernel mode

– As close as WinDbg gets to a memory map

• lm m disk
– Shows the disk driver

Reading from Memory

• dd nt
• Shows the start of module "nt"

• dd nt L10
• Shows the first 0x10 words of "nt"

Online Help

• .hh dd
– Shows help

about "dd"
command

– But there
are no
examples

More Commands
• r
• Dump all registers
• Link Ch 10m

Microsoft Symbols

Symbols are Labels

• Including symbols lets you use
– MmCreateProcessAddressSpace

• instead of
– 0x8050f1a2

Searching for Symbols

• moduleName!symbolName
– Can be used anywhere an address is expected

• moduleName
– The EXE, DLL, or SYS filename (without

extension)

• symbolName
– Name associated with the address

• ntoskrnl.exe is an exception, and is named nt
– Ex: u nt!NtCreateProcess

• Unassembles that function (disassembly)

Demo

• Try these
– u nt!ntCreateProcess
– u nt!ntCreateProcess L10
– u nt!ntCreateProcess L20

Deferred Breakpoints

• bu newModule!exportedFunction
–Will set a breakpoint on exportedFunction as

soon as a module named newModule is loaded

• $iment
– Function that finds the entry point of a

module

• bu $iment(driverName)
– Breaks on the entry point of the driver before

any of the driver's code runs

Searching with x

• You can search for functions or symbols
using wildcards

• x nt!*CreateProcess*
– Displays exported functions & internal

functions

Listing Closest Symbol with ln

• Helps in figuring out where a call goes
• ln address
– First lines show two closest matches
– Last line shows exact match

Viewing Structure Information with dt

• Microsoft symbols include type
information for many structures
– Including undocumented internal types
– They are often used by malware

• dt moduleName!symbolName
• dt moduleName!symbolName address
– Shows structure with data from address

Demo

• Try these
– dt nt!_DRIVER_OBJECT
– dt nt!_DEVICE_OBJECT

Show Specific Values for the "Beep"
Driver

Initialization Function

• The DriverInit function is called first
when a driver is loaded
• See labelled line in previous slide

• Malware will sometimes place its entire
malicious payload in this function

Configuring Windows Symbols

• If your debugging machine is connected to
an always-on broadband link, you can
configure WinDbg to automatically
download symbols from Microsoft as
needed

• They are cached locally
• File, Symbol File Path
– SRC*c:\websymbols*http://
msdl.microsoft.com/download/symbols

Manually Downloading Symbols

• Link Ch 10a

Kernel Debugging in Practice

Kernel Mode and User Mode Functions

• We'll examine a program that writes to
files from kernel space
• An unusual thing to do
• Fools some security products
– Kernel mode programs cannot call user-mode

functions like CreateFile and WriteFile
– Must use NtCreateFile and NtWriteFile

User-Space Code

Creates a service with the CreateService
function
dwServiceType is 0x01 (Kernel driver)

User-Space Code

• Not shown: edi being set to
– \\.\FileWriter\Device

User-Space Code

Kernel-Mode Code

• Set WinDbg to Verbose mode (View,
Verbose Output)
• Doesn't work with LiveKD

• You'll see every kernel module that loads
• Kernel modules are not loaded or

unloaded often
– Any loads are suspicious
– Except Kmixer.sys in VMware machines

 59

Kernel-Mode Code

• !drvobj command shows driver object

Kernel-Mode Code
• dt command shows structure

Kernel-Mode Filenames

• Tracing this function, it eventually creates
this file
– \DosDevices\C:\secretfile.txt

• This is a fully qualified object name
– Identifies the root device, usually \DosDevices

Finding Driver Objects

• Applications work with devices, not drivers
• Look at user-space application to identify

the interesting device object
• Use device object in User Mode to find driver

object in Kernel Mode
• Use !devobj to find out more about the

device object
• Use !devhandles to find application that use

the driver

Rootkits

Rootkit Basics

• Rootkits modify the internal functionality of
the OS to conceal themselves
– Hide processes, network connections, and other

resources from running programs
– Difficult for antivirus, administrators, and security

analysts to discover their malicious activity

• Most rootkits modify the kernel
• Most popular method:
– System Service Descriptor Table (SSDT) hooking

System Service Descriptor Table (SSDT)

• Used internally by Microsoft
– To look up function calls into the kernel
– Not normally used by third-party applications or

drivers

• Only three ways for user space to access
kernel code
– SYSCALL
– SYSENTER
– INT 0x2E

SYSENTER

• Used by modern versions of Windows
• Function code stored in EAX register

• More info about the three ways to call
kernel code is in links Ch 10j and 10k

Example from ntdll.dll

• EAX set to 0x25
• Stack pointer saved in EDX
• SYSENTER is called

SSDT Table Entries

• Rootkit changes the values in the SSDT so rootkit
code is called instead of the intended function

• 0x25 would be changed to a malicious driver's
function

Hooking NtCreateFile

• Rootkit calls the original NtCreateFile, then
removes files it wants to hide
• This prevents applications from getting a

handle to the file
• Hooking NtCreateFile alone won't hide a file

from DIR, however

Rootkit Analysis in Practice

• Simplest way to detect SSDT hooking
– Just look at the SSDT
– Look for values that are unreasonable
– In this case, ntoskrnl.exe starts at address

804d7000 and ends at 806cd580
– ntoskrnl.exe is the Kernel!

• lm m nt
– Lists modules matching "nt" (Kernel modules)
– Shows the SSDT table (not in Win 2008 in LiveKD)

Win 2008
• lm m nt failed on my Win 2008 VM
• This command shows the SSDT
• dps nt!KiServiceTable L poi nt!

KiServiceLimit
• Link Ch 10l

SSDT Table

• Marked entry is hooked
• To identify it, examine a clean system's SSDT

Finding the Malicious Driver

• lm
– Lists open modules
– In the kernel, they are all drivers

Interrupts
• Interrupts allow hardware to trigger

software events
• Driver calls IoConnectInterrupt to

register a handler for an interrupt code
• Specifies an Interrupt Service Routine (ISR)
–Will be called when the interrupt code is

generated

• Interrupt Descriptor Table (IDT)
– Stores the ISR information
– !idt command shows the IDT

Loading Drivers

• If you want to
load a driver to
test it, you can
download the
OSR Driver
Loader tool

Kernel Issues for Windows Vista,
Windows 7, and x64 Versions

• Uses BCDedit instead of boot.ini
• x64 versions starting with XP have PatchGuard
– Prevents third-party code from modifying the

kernel
– Including kernel code itself, SSDT, IDT, etc.
– Can interfere with debugging, because debugger

patches code when inserting breakpoints

• There are 64-bit kernel debugging tools
– Link Ch 10c

Driver Signing

• Enforced in all 64-bit versions of Windows
starting with Vista

• Only digitally signed drivers will load
• Effective protection!
• Kernel malware for x64 systems is

practically nonexistent
– You can disable driver signing enforcement by

specifying nointegritychecks in BCDEdit

