
CNIT 125: Information Security Professional (CISSP Preparation)

Ch 5. Communication and Network Security (Part 1)

Network Architecture and Design

- Simplex
 - One-way communication, like an FM radio
- Half Duplex
 - Sends or receives, but not both at once, like a walkie-talkie
- Full Duplex
 - Sends & receives simultaneously, like a telephone

Baseband

- Whole frequency range dedicated to one signal, like Ethernet
- Broadband
 - Multiple channels, each gets only a portion of the bandwidth
 - Like broadcast FM radio

- Analog
 - Continuous variations of signal
 - Signal degrades over distance and when repeated
 - Like a vinyl record
- Digital
 - Signal is a series of zeroes and ones
 - Can be transmitted and repeated with no loss of accuracy
 - Like a CD

- LAN (Local Area Network)
 - Within a building
- MAN (Metropolitan Area Network)
 - Within a city
- WAN (Wide Area Network)
 - Covering cities, states, or countries
- GAN (Global Area Network)
 - A global collection of WANs
- PAN (Personal Area Network)
 - Devices you carry, often using Bluetooth

- Internet
 - Global collection of networks running TCP/IP
- Intranet
 - Privately owned network using TCP/IP
- Extranet
 - Connects private Intranets
 - Such as connections to business partners

- Circuit-Switched Network
 - Dedicated circuit or channel for one connection
 - Ex: a T1 line between businesses
- Packet-Switched Network
 - Multiple signals share the same lines
 - Data is broken into packets
 - Less wasteful and therefore cheaper than circuit switching

- Quality of Service
 - Can give specific traffic precedence
 over other traffic
 - On a packet-switched network
 - Ex: VoIP packets get precedence over email packets

- Layered Design
 - OSI and TCP/IP models use layers
 - Each layer performs a specific function
 - Changes in one layer do not directly affect another layer

- Network Model
 - A description of how a network protocol suite operates
 - Ex: OSI model, TCP/IP model
- Network Stack
 - A network protocol suite programmed in software or hardware
 - Ex: TCP/IP

OSI Model

Mnemonics

- Please Do Not Throw Sausage Pizza Away
- All People Seem To Need Data Processing

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical
	l' ligoloai

Layer 1: Physical

- Protocol Data Unit: bit
- Physical media that carry signals
 - Ethernet cables
 - Radio waves
 - Fiber optic cables
- Devices
 - Hubs
 - Repeaters
 - Cables

Layer 2: Data Link

- Protocol Data Unit: frame
- Uses MAC addresses (for Ethernet)
- Devices
 - Ethernet card
 - Switch
 - Bridge

Layer 2: Data Link

- Two sub-layers
 - Media Access Control
 - Connects to layer 1
 - Logical Link Control
 - Connects to layer 3

Layer 3: Network

- Protocol Data Unit: packet
- Performs routing, using IP addresses
- Uses IPv4 and/or IPv6
- Device: Router

Layer 4: Transport

- Protocol Data Unit: Segment
- Protocols include UDP and TCP
- Uses Port Numbers
- TCP is reliable, orders segments, and resends undelivered segments

Layer 5: Session

- Network file shares are mounted at the session layer
 - For example, you must log in first
- Connections between applications

Layer 6: Presentation

- Presents data to the application layer in a comprehensible way
- Data conversion
- Character encoding such as ASCII
- Image formats like GIF and JPEG
- Encryption
- Compression

Layer 7: Application

- Numen-Readable data
- Web browser, word processor, IM client
- Protocols:
 - Telnet
 - FTP
 - HTTP

TCP/IP Model

OSI Model Application 7 Presentation 6 5 Session Transport 4 3 Network 2 Data Link Physical 1

TCP/IP Model	
Application	
Transport	
Tranoport	
Internet	
Network Access	

Network Access Layer

- Combines OSI layers 1 and 2
- Includes cable and NIC
- Uses MAC addresses

Internet Layer

- OSI Layer 3
- IP addresses and routing
- Uses IPv4 or IPv6

Transport Layer

- Matches OSI layer 4
- Contains TCP and UDP

Application Layer

- Combines OSI layers 5-7
- Presents network data to the human user
- Like a Web browser

Encapsulation

- Takes information from a higher layer, and adds a header to it
 - Like putting a letter in an envelope and addressing it
- Layer 4 TCP SEGMENT
- Is encapsulated in a Layer 3 IP PACKET
- That's encapsulated in a Layer 2 FRAME
- Sent over the wire at layer 1 as BITS

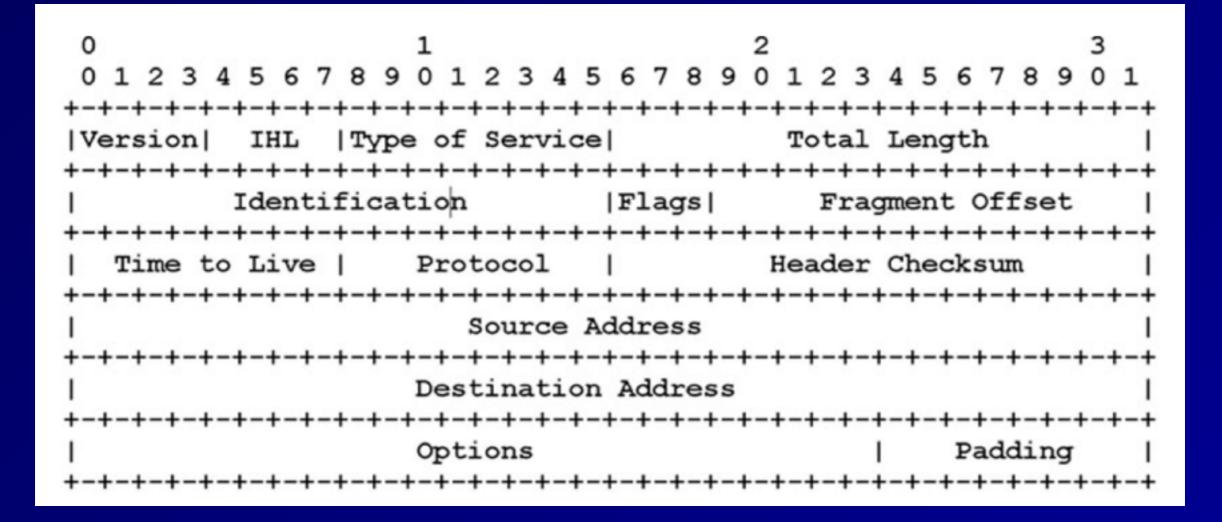
SPF10

- Segment
- Packet
- Frame
- One and Zero (Bits)

Decapsulation

- Also called de-multiplexing
- Happens at receiving end
- The addresses are stripped off the data packets, and the data is delivered to higher levels
- BITS are converted to FRAMES
- FRAMES are converted to PACKETS
- PACKETS are converted to SEGMENTS
- SEGMENTS are converted to application data

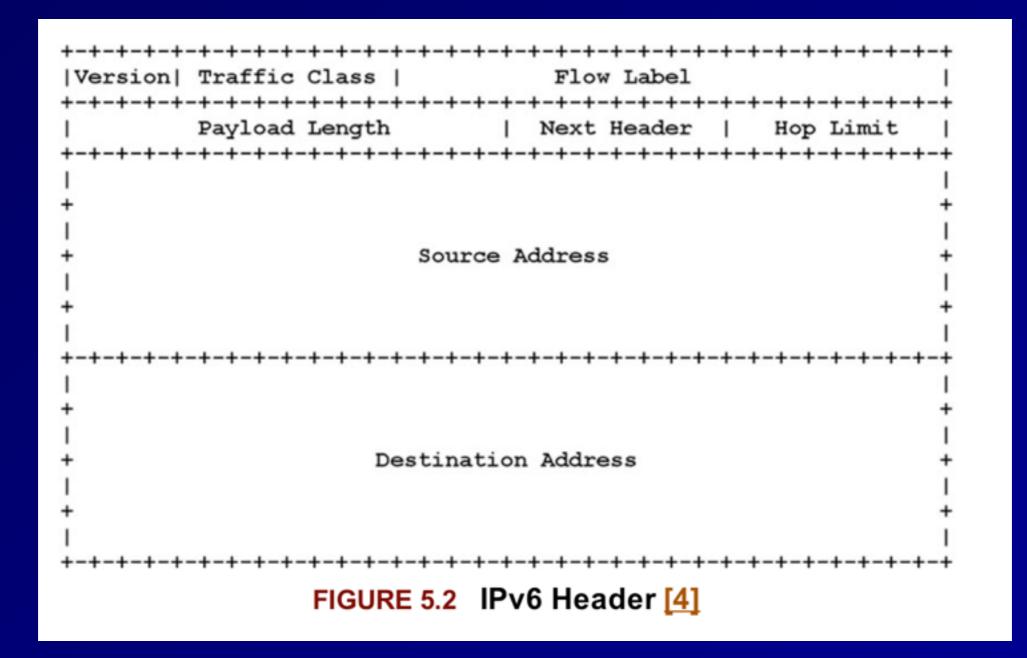
Network Access, Internet and Transport Layer Protocols and Concepts


MAC Addresses

- Media Access Control address
- Unique hardware address of an Ethernet NIC
- Burned in at the factory
- 48 bits long
 - First 24 bits form Organizationally
 Unique Identifier
- EUI-64 addresses are 64 bits long
 - Used in IPv6

IPv4

- Internet Protocol version 4
- 32-bit addresses
- Written as four bytes in decimal
 - 192.168.0.1


IPv4 Header

IPv4 Fragmentation

- An intermediate router can *fragment* a packet into smaller packets
 - To move it onto a network with a smaller maximum transmission unit
- "Path MTU Discovery"
 - Send a large packet with the DF (Don't Fragment) bit set
 - If it's dropped, try a lower packet size

IPv6 Header

IPv6 Addresses and Autoconfiguration

Sams-MacBook-Pro:~ sambowne\$ ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether ac:bc:32:c3:9e:b3
inet6 fe80::aebc:32ff:fec3:9eb3%en0 prefixlen 64 scopeid 0x4
inet 172.31.98.174 netmask 0xfffffe00 broadcast 172.31.99.255
nd6 options=1<PERFORMNUD>
media: autoselect
status: active

- MAC address used to construct host portion of IPv6 Address
 - Right 64 bits
- fe80:: is the *link-local* prefix
- Public addresses start with 2 or 3

IPv6 Security Challenges

- Many networks have IPv6 enabled, but the administrators don't understand how to manage it
- It can be used for forbidden activity, such as BitTorrent over IPv6

Disabling IPv6

Conner	ng Sharing			
	-	M Gigabit Network Cor	nection	
This co	nnection uses t	he following items:	Config	jure
	- Internet Proto - Internet Proto - Link-Layer To	Scheduler er Sharing for Microsof col Version 6 (TCP/IP col Version 4 (TCP/IP pology Discovery Map pology Discovery Res	v6) v4) oper I/O Drive	
•				•
	nstall ription	Uninstall	Prope	

Classful Networks

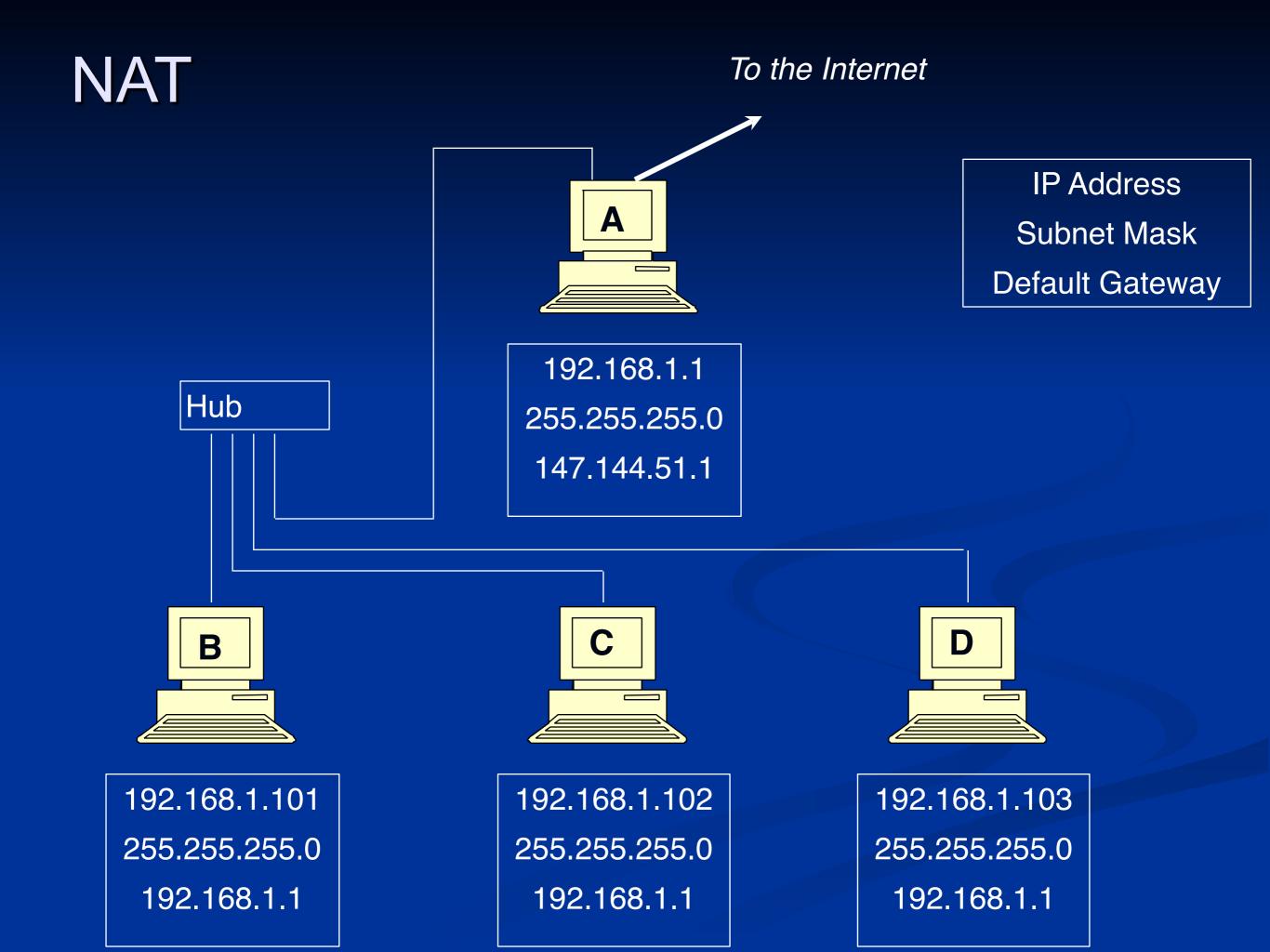
 Used until 1993

Class	IP Range
Class A	0.0.0.0 - 127.255.255.255
Class B	128.0.0.0 - 191.255.255.255
Class C	192.0.0.0 - 223.255.255.255
Class D (multicast)	224.0.0.0 - 239.255.255.255
Class E (reserved)	240.0.0.0 - 255.255.255.255

Classless Inter-Domain Routing (CIDR)

- Allows network sizes between the classes
- Class A is /8
- Class B is /16
- Class C is /24
- 147.144.96.0/20
 - 16 class Cs

16 million hosts 65,536 - 2 hosts 256 - 2 hosts


2048 - 2 hosts

Private IPv4 Addresses

- Defined in RFC 1918
- 10.0.0.0 10.255.255.255 (10.0.0/8)
- 172.16.0.0 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 192.168.255.255
 (192.168.0.0/16)

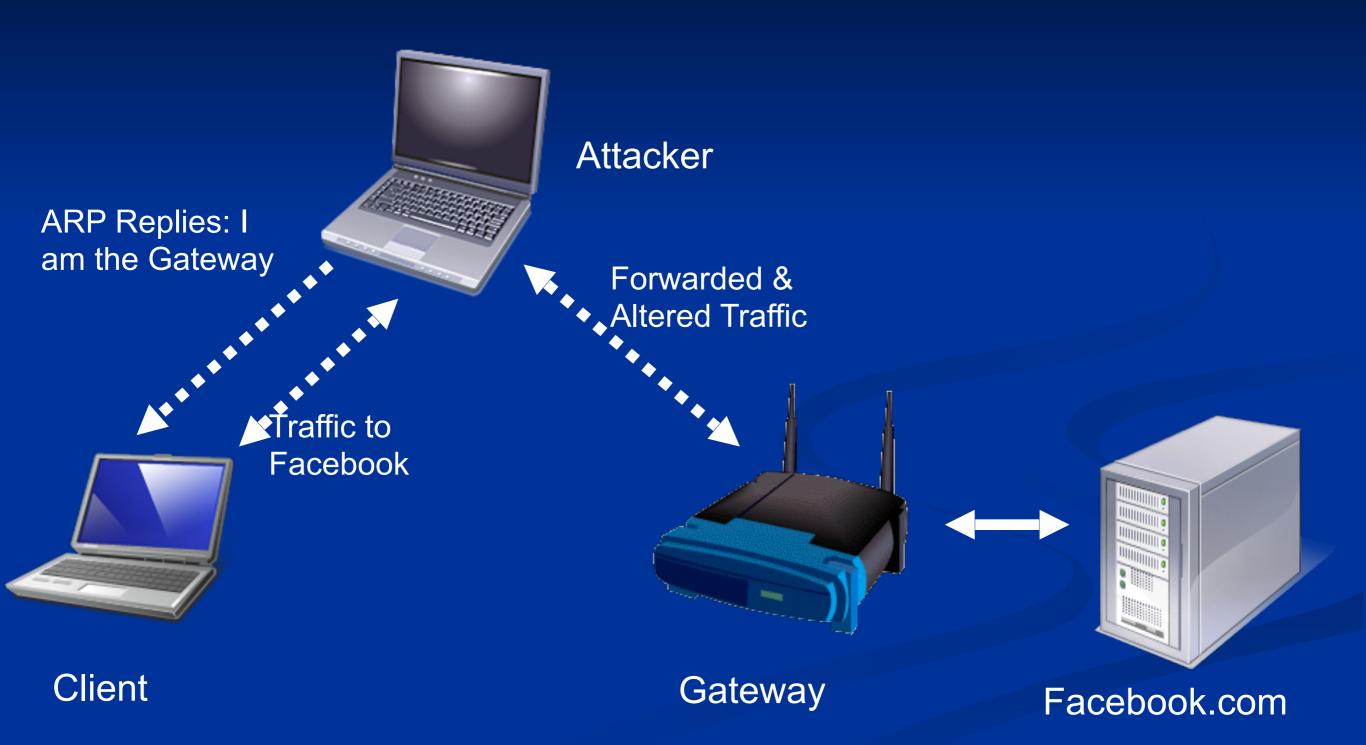
Network Address Translation (NAT)

- Usually used with Port Address Translation (PAT)
- So many clients can share a single public address
- Other techniques (rarely used)
 - Static NAT
 - One private address to one public address
 - Pool NAT
 - A group of public addresses translated oneby-one to the same number of local addresses

ARP (Address Resolution Protocol)

arp who-has 192.168.2.140 tell 192.168.2.4

arp reply 192.168.2.140 is-at 00:0c:29:69:19:66


- Used to find MAC addresses on a LAN
- RARP (Reverse Address Resolution Protocol)
 - An early competitor to DHCP to deliver IP addresses, not common anymore

ARP Request and Reply

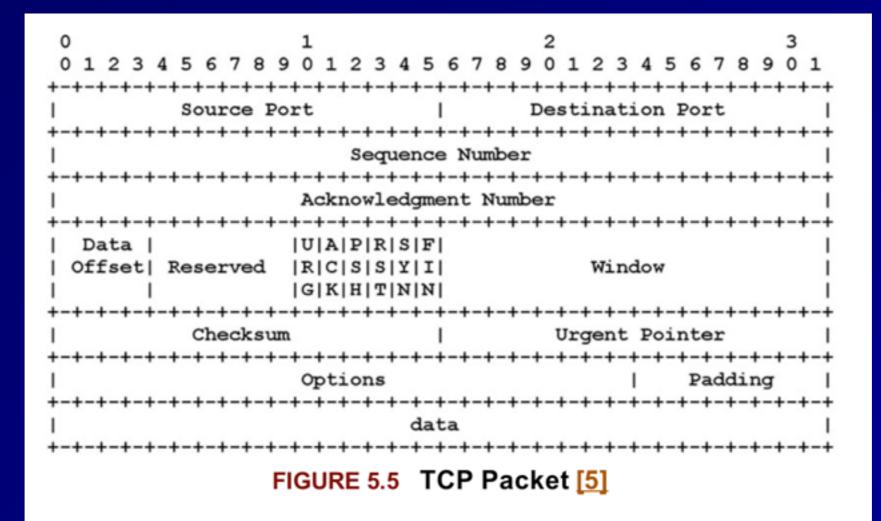
- Client wants to find Gateway
- ARP Request: Who has 192.168.2.1?
- ARP Reply:
 - MAC: 00-30-bd-02-ed-7b has 192.168.2.1

ARP Poisoning

Unicast and Multicast Traffic

- Unicast: One sender to one receiver
 - Most common
- Multicast: One sender to several receivers
 - Rare, used by routing protocols

Broadcast Traffic


- One sender to every device on the LAN
- Limited broadcast: 255.255.255.255
 - Actually sends layer 2 broadcast, to MAC address FF:FF:FF:FF:FF:FF:FF
- Directed broadcast: 147.144.255.255
 - Was once sent over the Internet
 - Blocked now to stop smurf attacks

Promiscuous Network Access

- A NIC in promiscuous mode passes all frames upward for use
 - Even if they are for a different MAC
- Required for Network Intrusion Detection Systems (NIDS)
- Entering promiscuous mode requires root privileges
- Switches isolate traffic segments
 - So traffic won't be sent to the wrong MAC address

TCP

- Transmission Control Protocol
- OSI Layer 4

TCP Ports

- 0-1023: Well-known ports
 - Require root privileges to listen on
 - Also called "reserved ports"
- 1024 65535
 - Ephemeral ports
 - Any user can listen on them

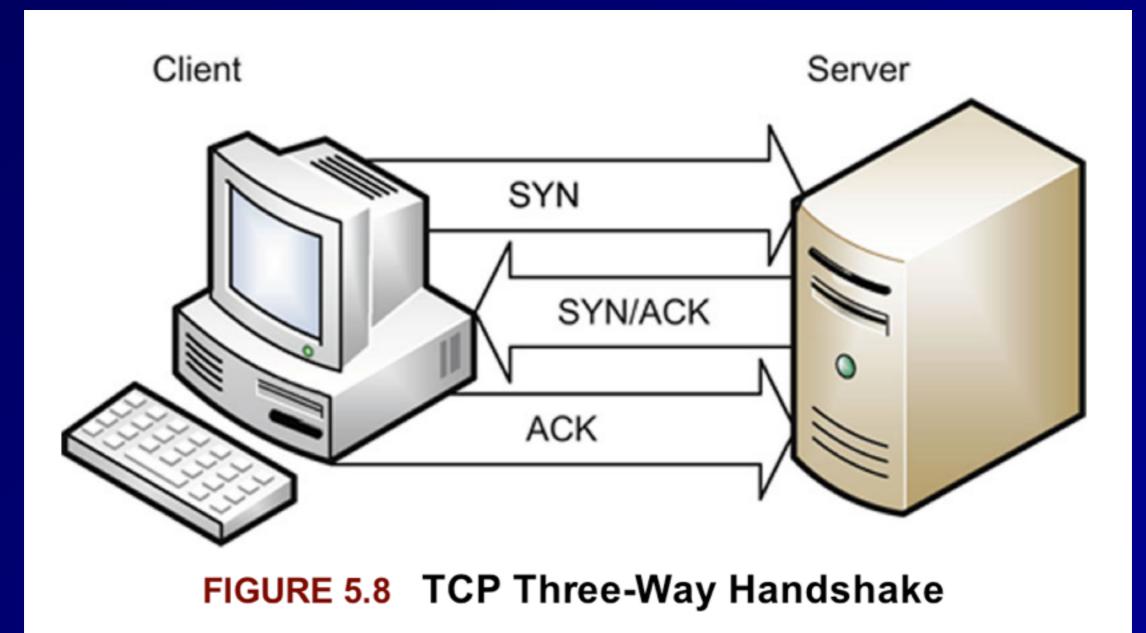
Socket

- A socket is a combination of four numbers
 - Source IP and Source Port
 - Destination IP and Destination Port
- Acts like a cable for two-way transmission

<pre>root@ubuntu:~# netstat -nat Active Internet connections (servers and established)</pre>							
ACTIV	e Interr	net conr	nection	ns (serve	rs and	established)	
Proto	Recv-Q	Send-Q	Local	Address		Foreign Address	
tcp	Θ	Θ,	127 A	A 1.631		0 0 0 0.*	
tcp	Θ	Θ	192.16	58.80.144	:51178	192.168.2.4:22	

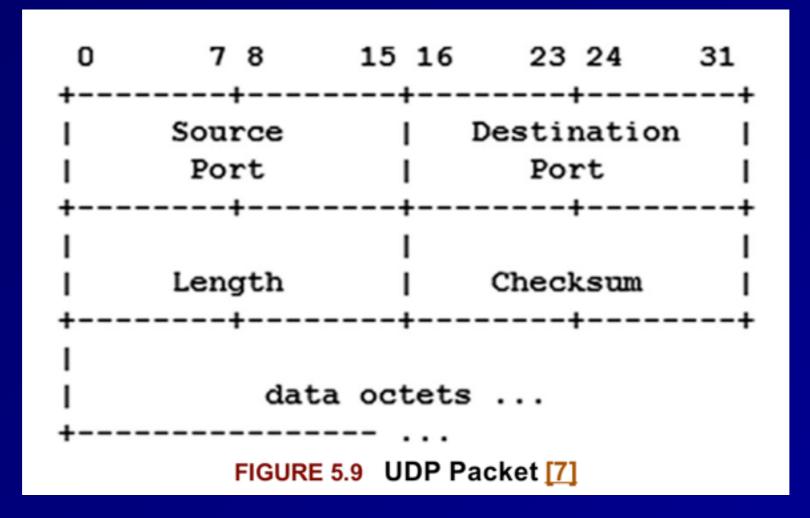
State LISTEN ESTABLISHED

FIGURE 5.6 TCP Socket Pair

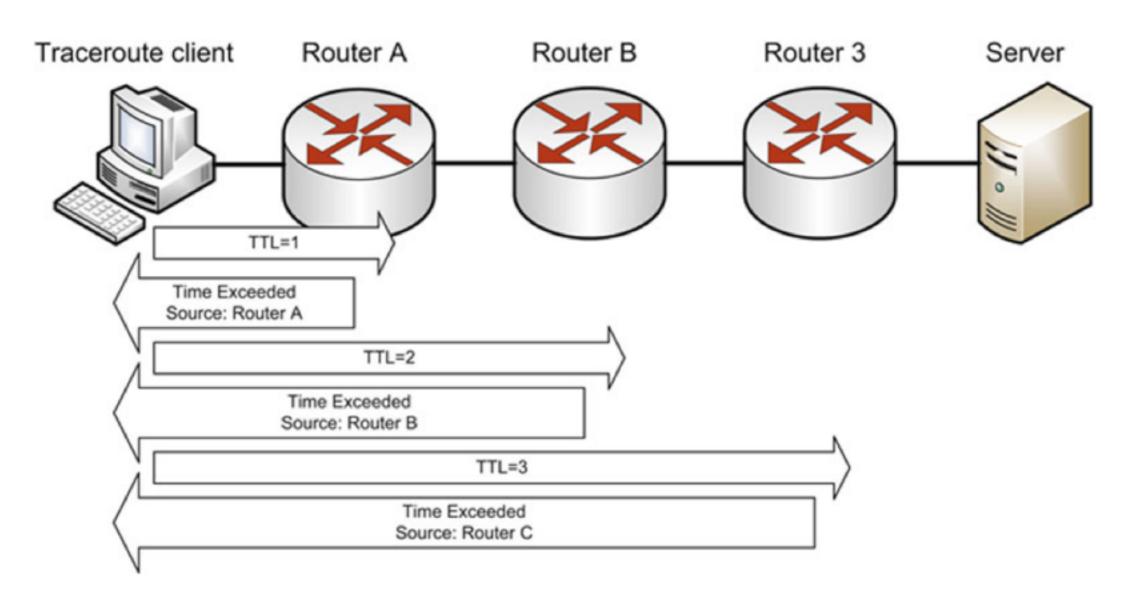


- LISTEN
 - Waiting for a SYN
- ESTABLISHED
 - Handshake complete

TCP Flags


- URG: Urgent
- ACK: Acknowledge
- PSH: Push
- RST: Reset &
- SYN: Synchronize
- FIN: Finish
- Three new flags added in 2001 & 2003
 - CWR: Congestion Window Reduced
 - ECE: Explicit Congestion Notification Echo
 - NS: Nonce Sum

TCP Handshake


UDP

- User Datagram Protocol
- No handshake
- No acknowledgements

ICMP

- Internet Control Message Protocol
- Used to troubleshoot and report error conditions
- PING
 - Sends an ICMP Echo Request
 - Gets an ICMP Echo Reply
- Traceroute
 - Sends packets with low TTL
 - Tracks ICMP Time Exceeded replies

FIGURE 5.10 Traceroute

Traceroute

- Unix and Cisco send UDP packets
- Microsoft sends ICMP packets

- Telnet
 - Terminal emulation
 - Sends command-lines
 - No encryption
- SSH (Secure Shell)
 - Encrypted replacement for Telnet

- FTP (File Transfer Protocol)
 - Sends passwords unencrypted
 - Uses ports 20 and 21 on the server
 - Problems for firewalls (link Ch 5b)
 - Active FTP initiates the port 20 connection from the server, not the client
 - Passive FTP uses an arbitrary ephemeral port on the server

- TFTP (Trivial File Transfer Protocol)
 - Uses UDP port 69
 - No authentication at all
 - No encryption
 - Used to update firmware in routers and IP phones

- SSH (Secure Shell)
 - Secure replacement for Telnet
 - And FTP and the unix "r" commands
 - rlogin, rshell, etc.
 - Includes SFTP and SCP
 - Can be used as a secure tunnel for other protocols, such as HTTP
 - Uses TCP port 22
 - SSHv1 is old and vulnerable, SSHv2 is the current standard

- SMTP (Simple Mail Transfer Protocol)
 - Uses TCP port 25
 - Used to send email between servers
- POP (Post Office Protocol)
 - TCP port 110
 - Used to download email to a local client like Eudora or Outlook
- IMAP (Internet Message Access Protocol)
 - TCP port 132
 - Used to download email to a local client like Eudora or Outlook

- DNS (Domain Name System)
 - Uses UDP and TCP 53
 - Large responses require TCP 53
 - Zone transfers
 - DNSSEC-signed records
 - Resolves domain names like ccsf.edu to IP addresses

- DNS Server Types
 - SOA (Start of Authority)
 - Contains the master record for a zone
 - Recursive server
 - If it doesn't have the requested data, it will ask other servers
 - Caching server
 - Stores recently resolved names

- DNS Weaknesses
 - Uses UDP
 - No authentication
 - Security relies on a 16-bit source port and a 16-bit DNS query ID
 - If attackers can guess both numbers, they can poison a DNS sever cache

- DNSSEC
 - Domain Name Server Security Extensions
 - Adds authentication and integrity to DNS responses
 - Uses public key encryption
 - No confidentiality
 - Like a digital signature
- Slowly being rolled out across the Internet

Online Dig

https://www.menandmice.com/support-training/support-center/dig/

Men & Mice Dig

Name server	8.8.8	
Domain name	ietf.org	
Query Type	Any (ANY) 😒 🗸 Recursive	
	Perform query Reset	

Link Ch 5c

RRSIG Contains Signature

Result

```
;; Truncated, retrying in TCP mode.
; <<>> DiG 9.8.1-P1 <<>> @8.8.8.8 ietf.org ANY +m
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31532
;; flags: gr rd ra; QUERY: 1, ANSWER: 25, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;ietf.org. IN ANY
;; ANSWER SECTION:
ietf.org. 1798 IN SOA ns0.amsl.com. glen.amsl.com. (
1200000317 ; serial
1800 ; refresh (30 minutes)
1800 ; retry (30 minutes)
604800 ; expire (1 week)
1800 ; minimum (30 minutes)
ietf.org. 1798 IN RRSIG SPF 5 2 1800 20170213210805 (
20160214200831 40452 ietf.org.
MDUnlyjQuyHc15QDf2TtCJXDt36mFJ8GMqEh+xKfv1Zq
4ZNbAqsLQDR6sFWlf72fvi8l7mmECzgtwtmKcfNRN1Ke
C/5fGPnl1QEgKcAY7K7rwG+M/jTHFxtGSQ9uNsKh3Dgo
BYXMFmvGRTchLjHN73104vphCOYolW0zYKBzhmLTH1G5
otbEKHjZVvHhi9EpfLkXLnM6bzK4iGmI3pXkn3owCOEr
jyJTt3cRhEPlw4phzWB5/ixYgfSN0AOJZNEKDS/IoL7D
R937IkHaBppcFjCpLuCjj24bSpmIJQpCWlVKXRquqxDw
puxhR0pPNEKHnR5CkhjsucKBeL8UVShAkw== )
```

- SNMP
 - Simple Network Management Protocol
 - Used to monitor and control network devices
 - Uses UDP port 161
 - SNMPv1 and v2 send "community strings" in plaintext
 - Defaults are "public" and "private"
 - SNMPv3 adds encryption; much more secure
 - Many networks still use SNMPv2

• HTTP

- Hypertext Transfer Protocol
- TCP port 80
- No encryption
- HTTPS
 - Hypertext Transfer Protocol Secure
 - TCP port 443
 - Encrypted with SSL/TLS

BOOTP

- Bootstrap protocol
- Enables a BIOS to boot from the network
- BIOS gets an IP address from BOOTP
- Then uses TFTP to load the OS
- Uses ports UDP 67 for servers and UDP 68 for clients

- DHCP
 - Intended to replace BOOTP
 - Can deliver IP address, DNS server, default gateway, and more
 - Uses ports UDP 67 for servers and UDP 68 for clients